The control of fundamental optical properties, such as transmission and reflection, over metallic surfaces plays a significant role in multiple fields like solar cells and aerospace. The direct laser etching in air can perform a variety of flexible control abilities in optical functional metal surfaces. In this paper, we use the aluminium alloy as an example of widely metal materials and propose two kinds of controlling strategies: large-range controlling strategy and small-range precise controlling strategy. The former changes the process repeat number of femtosecond laser or the scanning speed of nanosecond laser. The latter combines femtosecond laser and nanosecond laser. The results show that when the process repeat number of femtosecond laser is changed from 30 to 1, the height of the induced micro-pillars on the surface of Al alloy is changed from 80µm to 6µm. As a result, the reflectivity of samples will change from ∼16% to ∼87%. The nanosecond-laser-induced micro/nano structures achieve the reflectivity changing from ∼18% to ∼79% when the scanning speed changes from 10mm/s to 400mm/s in spectrum range of 250∼2000 nm. What’s, more, after being fabricated in the way of two-step controlling strategy, the reflectivity raises from ∼30% to ∼40% when the scanning speed of nanosecond laser changes from 10mm/s to 200mm/s, while the reflectivity of samples fabricated simply by nanosecond laser changes from ∼18% to ∼66% when the scanning speed changes in the same range and other parameters are kept the same. In addition, we demonstrated that the two-step precise controlling strategy is applicable to variety metals such as copper, stainless steel and titanium.

1.
Bae
,
W.-G.
,
Kim
,
H. N.
,
Kim
,
D.
,
Park
,
S.-H.
,
Jeong
,
H. E.
&
Suh
,
K.-Y.
(
2014
)
25th Anniversary Article: Scalable Multiscale Patterned Structures Inspired by Nature: the Role of Hierarchy
,
Advanced Materials
26
,
675
699
.
2.
Bernhard
,
C. G.
&
Miller
,
W. H.
(
1962
)
A CORNEAL NIPPLE PATTERN IN INSECT COMPOUND EYES
,
Acta Physiologica Scandinavica
56
,
385
-&.
3.
Fan
,
P.
,
Zhong
,
M.
,
Bai
,
B.
,
Jin
,
G.
&
Zhang
,
H.
(
2015
)
Tuning the optical reflection property of metal surfaces via micro-nano particle structures fabricated by ultrafast laser
,
Applied Surface Science
359
,
7
13
.
4.
Jeong
,
K. H.
,
Kim
,
J.
&
Lee
,
L. P.
(
2006
)
Biologically inspired artificial compound eyes
,
Science
312
,
557
561
.
5.
Parker
,
A. R.
&
Townley
,
H. E.
(
2007
)
Biomimetics of photonic nanostructures
,
Nature Nanotechnology
2
,
347
353
.
6.
Sun
,
C.-H.
,
Jiang
,
P.
&
Jiang
,
B.
(
2008
)
Broadband moth-eye antireflection coatings on silicon
,
Applied Physics Letters
92
.
7.
Yaoju
,
Z.
,
Jun
,
Z.
,
Chaolong
,
F.
,
Zhihong
,
L.
,
Xuesong
,
Z.
,
Yijie
,
L.
,
Xiukai
,
R.
&
Yuxing
,
D.
(
2018
)
Enhancement of silicon-wafer solar cell efficiency with low-cost wrinkle antireflection coating of polydimethylsiloxane
,
Sol. Energy Mater. Sol. Cells (Netherlands)
181
,
15
20
.
8.
Xu
,
Y.
,
Mao
,
Y.
,
Lang
,
R.
,
Du
,
X.
&
Yang
,
J.
(
2018
)
Near-infrared graded-index antireflection coating from ZnSe hollow nanospheres
,
Mater. Lett.
,
222
,
21
24
.
9.
El Amin
,
A. A.
&
Hassan
,
M. K.
(
2018
)
Fabrication solar cell of CdTe0.65P0.35/Si with high efficiency using double-layer antireflection
,
Electr. Eng.
100
,
1003
1007
.
10.
Zeng
,
Y.
,
Chen
,
X. F.
,
Yi
,
Z.
,
Yi
,
Y. G.
&
Xu
,
X. B.
(
2018
)
Fabrication of p-n heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties
,
Applied Surface Science
441
,
40
48
.
11.
Li
,
B.
,
Niu
,
G.
,
Sun
,
L. X.
,
Yao
,
L.
,
Wang
,
C. Y.
&
Zhang
,
Y. F.
(
2018
)
Design optimization and antireflection of silicon nanowire arrays fabricated by Au-assisted chemical etching
,
Mater. Sci. Semicond. Process
82
,
1
8
.
12.
Kumar
,
M.
,
Satpati
,
B.
,
Singh
,
A.
&
Som
,
T.
(
2018
)
Colossal Broad Band Antireflection from Conformally Grown Cu2O on Pyramidally Textured Si and its Photovoltaic Applications
,
Sol. RRL
2
,
7
.
13.
Yanagishita
,
T.
,
Kondo
,
T.
&
Masuda
,
H.
(
2018
)
Preparation of renewable antireflection moth-eye surfaces by nanoimprinting using anodic porous alumina molds
,
Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena
36
,
031802
(5 pp.)-031802 (5 pp.).
14.
Fan
,
P.
,
Bai
,
B.
,
Zhong
,
M.
,
Zhang
,
H.
,
Long
,
J.
,
Han
,
J.
,
Wang
,
W.
&
Jin
,
G.
(
2017
)
General Strategy toward Dual-Scale-Controlled Metallic Micro-Nano Hybrid Structures with Ultralow Reflectance
,
Acs Nano
11
,
7401
7408
.
15.
Vorobyev
,
A. Y.
&
Guo
,
C.
(
2008
)
Femtosecond laser blackening of platinum
,
Journal of Applied Physics
104
(
5
).
16.
Vorobyev
,
A. Y.
&
Guo
,
C.
(
2013
)
Direct femtosecond laser surface nano/microstructuring and its applications
,
Laser & Photonics Reviews
7
(
3
),
385
407
.
17.
Liu
,
S.
,
Hu
,
J.
&
Zhao
,
M.
(
2016
)
Femtosecond laser-induced periodic surface structure and its applications
,
Chinese Science Bulletin
61
(
14
),
1560
1573
.
18.
Kelly
,
K. L.
,
Coronado
,
E.
,
Zhao
,
L. L.
&
Schatz
,
G. C.
(
2003
)
The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment
,
Journal of Physical Chemistry B
107
,
668
677
.
19.
Smausz
,
T.
,
Csizmadia
,
T.
,
Tapai
,
C.
,
Kopniczky
,
J.
,
Oszko
,
A.
,
Ehrhardt
,
M.
,
Lorenz
,
P.
,
Zimmer
,
K.
,
Prager
,
A.
&
Hopp
,
B.
(
2016
)
Study on the effect of ambient gas on nanostructure formation on metal surfaces during femtosecond laser ablation for fabrication of low-reflective surfaces
,
Applied Surface Science
389
,
1113
1119
.
20.
Paivasaari
,
K.
,
Kaakkunen
,
J. J. J.
,
Kuittinen
,
M.
&
Jaaskelainen
,
T.
(
2007
)
Enhanced optical absorptance of metals using interferometric femtosecond ablation
.
Optics Express
15
,
13838
13843
.
21.
Yang
,
Y.
,
Yang
,
J.
,
Liang
,
C.
&
Wang
,
H.
(
2008
)
Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses
,
Optics Express
16
(
15
),
11259
11265
.
22.
Lasagni
,
A.
,
Nejati
,
M.
,
Clasen
,
R.
&
Muecklich
,
F.
(
2006
)
Periodical surface structuring of metals by laser interference metallurgy as a new fabrication method of textured solar, selective absorbers
.
Advanced Engineering Materials
8
,
580
584
.
23.
Yao
,
C.
,
Ye
,
Y.
,
Jia
,
B.
,
Li
,
Y.
,
Ding
,
R.
,
Jiang
,
Y.
,
Wang
,
Y.
&
Yuan
,
X.
(
2017
)
Polarization and fluence effects in femtosecond laser induced micro/nano structures on stainless steel with antireflection property
.
Applied Surface Science
425
,
1118
1124
.
24.
Iyengar
,
V. V.
,
Nayak
,
B. K.
&
Gupta
,
M. C.
(
2010
)
Ultralow reflectance metal surfaces by ultrafast laser texturing
,
Applied Optics
49
(
31
),
5983
5988
.
25.
Huang
,
H.
,
Yang
,
L.M.
,
Bai
,
S.
&
Liu
,
J.
(
2015
)
Blackening of metals using femtosecond fiber laser
,
Applied Optics
54
(
2
),
324
333
.
26.
Vorobyev
,
A. Y.
,
Topkov
,
A. N.
,
Gurin
,
O. V.
,
Svich
,
V. A.
&
Guo
,
C.
(
2009
)
Enhanced absorption of metals over ultrabroad electromagnetic spectrum
,
Applied Physics Letters
95.
27.
Vorobyev
,
A. Y.
&
Guo
,
C.
(
2005
)
Enhanced absorptance of gold following multipulse femtosecond laser ablation
,
Physical Review B
72
(
19
).
28.
Bucci
,
O. M.
&
Franceschetti
,
G.
(
1971
)
SCATTERING FROM WEDGE-TAPERED ABSORBERS
.
Ieee Transactions on Antennas and Propagation AP19
,
96
-+.
This content is only available via PDF.
You do not currently have access to this content.