Parts manufactured by Laser Beam Melting (LBM) are about to break through prototype status and into industrial applications, especially in the medical technology and aviation industries. Machine and Handling Systems (MHS) have not yet benefited from the numerous advantages of this disruptive manufacturing method on a broader scale, although conditions appear promising for implementation. Certification and approval processes often require less time and costs for MHS than for other industry branches, which promotes rapid implementation of LBM. In the future, modern MHS will perform more specialized, diverse and complex tasks, even going beyond industrial applications and entering the private use market, e. g. through household assisting robots.

Within the first section of this paper, an insight into the requirements and challenges in the context of existing manufacturing and use restrictions of MHS is given. Furthermore, the first section briefly introduces the LBM process and its benefits and restrictions.

In the second section, the concepts of lightweight construction, functional integration and a high degree of design freedom reveal potential for the design and redesign of novel product solutions for current and future applications. Exemplary a 6 axis robot is being examined with regard to industrial LBM production. Suitable sub-components will be identified.

Possible solutions for the previously mentioned fields are described in the third section. In order to determine achievable weight savings and to allow masses to be more dynamic, conventional designs are compared to developed topology-optimized components.

Additionally, feature integration allows MHS manufacturing steps to be reduced. An integral design is being studied to minimize the number of machine parts used. Biomimetic approaches are used to reduce interference contours. This is of great importance for preventive personal protection in Human-Machine Interaction (HMI) in order to expand the range of applications of modern MHS. Furthermore, modal properties are specifically adapted. Lattice and hybrid LBM construction methods are also being considered.

Accumulated in-depth knowledge of industrial LBM, lightweight construction, functional integration, design flexibility in mass customization and also HMI topics for MHS are summarized. An outlook is given on further applications and future approaches for industrialization.

1.
Seyda
,
V.
(
2012
)
Chancen und Risiken laser-additiver Fertigung in der Medizintechnik am Beispiel eines Hüftimplantats
.
Vortrag. 8. Fachtagung Laser-tage Weser-Ems
(22 March
2012
), Emden, Germany.
2.
Gürbüz
,
Ç.
(
2016
) Additive Manufacturing for Lightweight Aviation Parts, in
T.
Hikmet Karakoc
,
M.
Baris Ozerdem
,
M.
Ziya Sogut
,
C.
Ozgur Colpan
,
O.
Altuntas
,
E.
Açikkalp
(ed)
Sustainable Aviation – Energy and Environmental Issues
,
Springer
,
333
339
.
3.
Bugatti Automobiles S.A.S
. (
2018
)
Weltpremiere: Bremssattel aus dem 3D-Drucker (22 January 2018)
, in https://www.bugatti.com/de/media/news/2018/bugatti-weltpremiere-bremssattel-aus-dem-3d-drucker/ (08 May
2018
x),
Molsheim/
Wolfsburg.
4.
Hoch
H.
&
Möller
T.
(
2018
)
Luftfahrtzertifizie-rungsprozess
,
TQC Consulting
,
Oyten, Germany
.
5.
Festo AG & Co. KG
(
2018
)
BionicTripod mit Fin-Gripper
.
Flexibler Tripod mit adaptivem Greifer
,
Ostfildern, Germany
.
6.
TCT Magazine
(
2018
) Generativ gefertigtes PKW-Schwenklager, Innovative Lösungen mittels 3D-Druck bei der Hirschvogel Tech Solutions,
TCT Magazine
2
(
2
),
Rapid News Publications Ltd
,
Chester, United Kingdom
, pp.
8
9
.
7.
Masselter
,
T.
,
Bartholtt
,
W.
,
Bauer
,
G.
,
Bertling
,
J.
,
Cichy
,
F.
,
Ditsche-Kur
,
P.
,
Gallenmüller
,
F.
,
Gude
,
M.
,
Haushahn
,
T.
,
Hermann
,
M.
,
Immink
,
H.
,
Knippers
,
J.
,
Linhard
,
J.
,
Luchsinger
,
R.
,
Lunz
,
K.
,
Mattheck
,
C.
,
Milwich
,
M.
,
Mölders
,
N.
,
Neinhuis
,
C.
,
Nellensen
,
A.
,
Poppinga
,
S.
,
Rechberger
,
M.
,
Schleicher
,
S.
,
Schmitt
,
C.
,
Schwager
,
H.
,
Seidel
,
R.
,
Speck
,
O.
,
Stegmaier
,
T.
,
Tesari
,
I.
,
Thielen
,
M.
&
Speck
,
T.
(
2013
) Biomimetic Products, in
Y.
Bar-Cohen
(ed)
Biomimetics Nature-Based Innovation
,
CRC Press
,
377
430
.
8.
Fraunhofer IPK
(
2018
)
Automatisierung in der Landwirtschaft, Mit Leichtbau-Robotern auf Gurkenernte
,
FORSCHUNG KOMPAKT
(February
2018
),
Berlin, Germany
, pp.
1
3
.
9.
Müller
P.
(
2018
) Arbeiten im Forschungschwer-punkt Aktive Schwingungsdämpfung, Fachbereich Elektrotechnik und Informationstechnik, Lehrstuhl für Regelungstechnik, Prof. Dr.-Ing. Steven Liu, in https://www.eit.uni-kl.de/liu/forschung/aktSchwDae.html (23 May
2018
),
Technische Universität Kaiserslautern
,
Kaiserslautern, Germany
.
10.
Gattringer
H.
(
2011
) Starr-elastische Robotersysteme,
Theorie und Anwendung
,
Springer-Verlag, Linz Berlin Heidelberg
,
Germany
.
11.
Yamasaki
T.
(
2006
)
Prädiktive Schwingungs-kom-pensation für Werkzeugmaschinen mit Parallel-kinematik
,
Shaker Verlag
,
Aachen, Germany
.
12.
Eppler
C.
(
2003
)
Kompensation fremderregter Schwingungen in Antriebssystemen mit Umlaufge-trie-ben
,
Jost Jetter Verlag
,
Heimsheim, Germany
.
13.
American Society for Testing and Materials-Standard Terminology
(
2012
)
American Society for Testing and Materials F2792-Standard Terminology for Additive Manufacturing Technologies
,
West Conshohocken
,
United States of America
.
14.
Verein Deutscher
Ingenieure
(
2007
)
VDI 3405 - Additive Fertigungsverfahren - Grundlagen, Begriffe, Verfahrensbeschreibungen
,
Beuth Verlag
,
Berlin, Germany
.
15.
Gebhardt
A.
&
Hötter
J. S.
(
2016
)
Additive Manufacturing: 3D Printing for Prototyping and Manufacturing
,
Carl Hanser Verlag & Co. KG
,
München, Germany
.
16.
Shellabear
M.
&
Nyrhilä
O.
(
2004
)
DMLS - Development history and state of the art
,
LANE 2004 Conference
,
Erlangen, Germany
.
17.
Brown
B.
,
Everhart
W.
&
Dinardo
J.
(
2016
)
Characterization of bulk to thin wall mechanical response transition in powder bed AM
,
Rapid Prototyping Journal
No.
5
Vol.
22
, pp.
801
809
.
18.
Rommel
,
S.
&
Fischer
,
A.
, (
2013
)
Additive Manufacturing – A Growing Possibility to Lighten the Burden of Spare Parts Supply: Digital Product and Process Development Systems
,
Dresden
,
Germany
,
112
123
.
19.
Müller
,
B.
,
Hund
,
R.
,
Maelk
,
R.
&
Gerth
,
N.
(
2013
)
Laser Beam Melting for Tooling Applications – New Perspectives for Resource-Efficent Metal Forming and Die Casting Processes: Digital Product and Process Development Systems
,
Dresden
,
Germany
,
124
137
.
20.
Bremen
S.
&
Meiners
A. D. W.
(
2012
)
Selective Laser Melting: A manufacturing technology for the future
,
Laser Technik Journal
4
(
2012
), Germany, pp.
33
38
.
21.
Fraunhofer
I.W.U.
(
2018
)
Netzwerk Strahlschmelzen
, in https://www.strahlschmelzen.de/index.php/en/technology (26 January
2018
x),
Dresden
,
Germany
.
22.
Diegel
O.
(
2014
)
Additive Manufacturing: An Overview, in Comprehensive Materials Processing
,
Elsevier
, pp.
10.02.4.1
-
10.02.4.4
.
23.
Tyson
,
M.
(
2013
)
Robotics 101, ABB Technology Show (May)
.
24.
Noruk
,
J.
(
2015
),
New Sensing Technology for Robotic Joining Automation, National Arc Robotic Welding Conference.
25.
HYFRA Industriekühlanlagen GmbH
(
2018
),
eChilly kompakte uns störungssichere Kühlwasser-Rückkühlung
,
Kunkel
,
Germany
.
26.
Leistner
M.
(
2004
)
Herstellung von Funktions-prototypen und Werkzeugen mit serienidentischen Eigen-schaften durch Selective Laser Melting
,
Forschungs-zentrum Karlsruhe GmbH
,
Karlsruhe, Germany
.
This content is only available via PDF.
You do not currently have access to this content.