Laser Remote Scanner (LRS) technology is one of the most promising topics in industrial manufacturing. To overcome current limitations for large-scale applications, an automated scanner system with 30 kW laser power has been developed. This system includes a stereo camera-based 3D vision for part detection as well as for task estimation. For this purpose, precise 3D/6D laser tool calibration has been conducted. To control the effect of focus shift due to high laser power level, additively manufactured lens holders and an easy to compute real-time focus shift compensation model has been investigated and is presented.

The first section briefly introduces the 30 kW LRS concept, which includes demands and limitations. Furthermore, approaches for optical design and mechanical solutions, such as a gimbal-mounted mirror, are shown. The integration of the stereo camera system is considered.

Section two describes laser tool calibration in 3D/6D, which is a prerequisite for absolute high precision laser tool positioning of self-teaching automated LRS. A feasibility study has been performed.

Laser beam induced thermal behaviors in the 30 kW LRS optics are discussed in section three, which causes refraction index and geometry changes that lead to focus shift. Additive manufactured internal cooled lens holder structure has been studied. A model for real-time compensation of focus shift has been investigated. It combines thermo-optic, stress-optic and geometric effect with ABCD matrix analysis for optics.

The topics are summarized and an outlook is given on further applications for high power LRS.

1.
Debschütz
,
K. D.
&
Becker
,
W.
(
2005
)
Potenziale des robotergeführten Remote-Laserschweißens
,
EALA 2005, 6th European Expert Conference
,
Bad Nauheim, Germany
, pp.
258
272
.
2.
Ream
,
S. L.
(
2005
)
North American Automotive Laser Applications - Today and Tomorrow
,
EALA 2005, 6th European Expert Conference
,
Bad Nauheim, Germany
, pp.
95
133
.
3.
Schäfer
,
P.
(
2010
)
Schneiden auf Abstand
,
ATZproduktion
3
(
2
), pp.
24
28
.
4.
Fysikopoulos
,
A.
,
Pastras
,
G.
,
Stavridis
,
J.
,
Stavropoulos
,
P.
&
Chryssolouris
,
G.
(
2015
)
On the performance evaluation of remote laser welding process: an automotive case study
,
48th CIRP Conference on Manufacturing Systems 2015, Procedia CIRP 41
,
Ischia (Naples), Italy
, pp.
969
974
.
5.
Katayama
,
S.
(
2013
)
Introduction: fundamentals of laser welding, Handbook of laser welding technologies
, 1st Ed,
Elsevier Science (Woodhead Publishing Series in Electronic and Optical Materials, 41
),
Oxford Cambridge Philadelphia New Delhi
, pp.
3
16
.
6.
Gebhardt
,
A.
(
2016
) Additive Fertigungsverfahren. Additive Manufacturing und 3D-Drucken für Proto-typing - Tooling - Produktion, 5th Ed,
Carl Hanser Verlag
,
Munich, Germany
.
7.
Cann
,
J.
(
2005
)
A Look at Remote Laser Beam Welding
,
Welding Journal
84
(
8
), pp.
34
37
.
8.
Tsoukantas
,
G.
,
Stournaras
,
A.
&
Chryssolouris
,
G.
(
2008
)
Experimental investigation of remote welding with CO2 and Nd:YAG laser-based systems
,
Journal of Laser Applications
20
(
1
).
9.
Emmelmann
,
C.
(
2005
)
Laser Remote Welding - Status and Potential for Innovations in Industrial Production, LiM 2005
,
Munich, Germany
.
10.
Ostendorf
,
A.
(
2005
)
Laser Remote Welding - From development to application. An overview with regard to the history, the present state and the future of a promising technology
,
EALA 2005, 6th European Expert Conference
,
Bad Nauheim, Germany
, pp.
195
229
.
11.
Zäh
,
M. F.
,
Moesl
,
J.
,
Musiol
,
J.
&
Oefele
,
F.
(
2010
)
Material processing with remote technology revolution or evolution?
,
LANE 2010, Part 1
, Volume
5
, Part A, Fürth, Germany, pp.
19
33
.
12.
Wetzig
,
A.
(
2013
)
Developments in beam scanning (remote) technologies and smart beam processing, Handbook of laser welding technologies
, 1st Ed,
Elsevier Science (Woodhead Publishing Series in Electronic and Optical Materials, 41
),
Oxford Cambridge Philadelphia New Delhi
, pp.
422
433
.
13.
Thomy
,
C.
,
Grupp
,
M.
,
Seefeld
,
T.
,
Sepold
,
G.
&
Vollertsen
,
F.
(
2004
)
CO₂-Laser-Remoteschweißen. Grundlagen
,
Prozessuntersuchungen und Anwendungen, wt Werkstattstechnik online
94
(
7/8
), pp.
373
378
.
14.
Tsoukantas
,
G.
&
Chryssolouris
,
G.
(
2008
)
Theoretical and experimental analysis of the remote welding process on thin, lap-joined AISI 304 sheets
,
The International Journal of Advanced Manufacturing Technology
35
(
9-10
), pp.
880
894
.
15.
Kah
,
P.
,
Lu
,
J.
,
Martikainen
,
J.
&
Suoranta
,
R.
(
2013
)
Remote Laser Welding with High Power Fiber Lasers
,
ENG (Engineering)
05
(
09
), pp.
700
706
.
16.
Emmelmann
,
C.
,
Cerwenka
,
G.
&
Wollnack
,
J.
(
2014
)
Light Prototyping im Schiff- und Ingenieurbau. QuInLas – Innovative Laserfügeverfahren für den 3-dimensionalen Sektionsbau, 14
.
Tagung Schweißen in der Maritimen Technik und im Ingenieurbau, Hamburg
,
Germany
, pp.
62
77
.
17.
TRUMPF Laser- und Systemtechnik GmbH
(
2018
)
Programmierbare Fokussieroptiken
.
Technische Daten
,
Ditzingen, Germany
.
18.
SCANLAB GmbH
(
2017
)
intelliWELD II, intelliWELD
,
Puchheim
,
Germany
.
19.
Munsch
,
M.
,
Wollnack
,
J.
,
Kirchhoff
,
M.
&
Emmelmann
,
C.
(26.06.
2012
)
Parallelkinematisches Spiegel-Ablenksystem mit doppelkardanischer Aufhängung
, DE102012012780 A1, WO2014000883 A1.
20.
Emmelmann
,
C.
,
Schenk
,
K.
,
Wollnack
,
J.
&
Kirchhoff
,
M.
(
2011
)
High-Precision Calibration of a Weld-On-The-Fly-System, LiM 2011
,
Munich, Germany
, pp.
739
743
.
21.
Wollnack
,
J.
(
2007
) 3D/6D-Visionsysteme in der Robotik – Vollautomatische Sensor-,
Sensor-Greifer- und Roboter-Kalibration, wt Werkstattstechnik online
97
(
9
),
Springer-VDI-Verlag
,
Düsseldorf, Germany
, pp.
718
725
.
22.
Corning Incorporated
(
2014
)
Corning HPFS® 7979, 7980, 8655 Fused Silica. Optical Materials Product Information
,
Specialty Materials Division
,
New York, USA
.
23.
De Jong
,
B. H. W. S.
,
Beerkens
,
R. G. C.
,
Nijnatten
,
P. A. van
&
Le Bourhis
,
E.
(
2011
)
Glass, 1. Fundamentals, ULLMANN’S Encyclopedia of Industrial Chemistry
, 7th Ed,
WILEY-VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
, p.
11
.
24.
Heraeus Quarzglas GmbH & Co. KG
(
2018
)
Quartz Glass for Optics
.
Data and Properties
,
Hanau, Germany
.
25.
Cerwenka
,
G.
,
Wollnack
,
J.
&
Emmelmann
,
C.
(
2015
)
Development of an adaptive focus position control system for a new high-performance laser remote welding head, LiM 2015
,
Munich, Germany
.
26.
Schlünder
,
E.-U.
&
Martin
,
H.
(
1995
)
Einführung in die Wärmeübertragung. Für Maschinenbauer, Verfahrenstechniker, Chemie-Ingenieure, Physiker, Biologen und Chemiker ab dem 4. Semester
, 8th Ed,
Springer-Verlag
,
Berlin Heidelberg, Germany
.
27.
Böckh
,
P. von
&
Wetzel
,
T.
(
2015
)
Wärmeüber-tragung. Grundlagen und Praxis
, 6th Ed,
Springer-Verlag, Berlin Heidelberg
,
Germany
.
28.
Nußelt
,
E. K. W.
(
1915
)
Das Grundgesetz des Wärmeüberganges, Gesundheits-Ingenieur -
Zeitschrift für die gesamte Städtehygiene
38
, pp.
477
482
, pp. 490-496.
29.
Bach
,
H.
&
Neuroth
,
N.
(
1995
)
The Properties of Optical Glass, Schott Series on Glass and Glass Ceramics
,
Springer-Verlag
,
Berlin Heidelberg
, pp.
105
114
.
30.
Litfin
,
G.
(
2005
)
Technische Optik in der Praxis
, 3rd Ed,
Springer-Verlag, Berlin Heidelberg
New York
, pp.
144
147
.
31.
SCHOTT AG
(
2016
)
TIE-19: Temperature Coef-ficient of the Refractive Index
, pp.
1
3
.
32.
SCHOTT AG
(
2004
)
TIE-27: Stress in optical glass
, p.
6
.
This content is only available via PDF.
You do not currently have access to this content.