The overall economic damage caused by plagiarism is estimated at around 250 billion euro per year worldwide [1]. In addition to the economic damage to companies, forgers endanger the consumer by even bringing drugs and airplane parts of inferior quality to the market [1,2]. Consumers and products can be protected by forgery-proof safety markings. Conventional safety markings such as coding or seals can be easily forged. Forgery-proof safety markings are cost-intensive or use rare earths [2,3].

2-beam interference structuring is a method of applying safety markings with a periodic structure to different materials in one process step. Depending on the angle of view and the periodicity of the structures, the respective structure shimmers in a certain color. Thus, 2-beam interference structuring offers the possibility to create individual safety markings on different materials. The markings differ macroscopically due to the color reflection and microscopically due to the structure periodicity. Ultrafast laser radiation enables 2-beam interference structuring with periodic structure sizes around 1 µm. In this study, the heat influenced areas during 2-beam interference structuring are determined and the occurrence of a melt is characterized by scanning electron microscope analyses. For this purpose, steel and brass with different heat conductivity are structured and analyzed regarding melt formation and topography. Electron backscatter diffraction (EBSD) analyses characterize the influence of the structuring process on the microstructure in the marginal regions.

1.
K.
Dämon
,
N.
Hansen
,
Plagiate, Fakes & Co.
:
Fälscher verdienen so viel wie Drogenbosse
. www.wiwo.de/unternehmen/handel/plagiate-fakes-und-co-schaeden-in-zweistelliger-milliardenhoehe/7505292-2.html.
2.
C.
Vieweg
,
Plagiate: Schnäppchen mit Gefahr für Leib und Leben
. www.zeit.de/mobilitaet/2015-06/plagiat-autoindustrie-autoteile.
3.
M. R.
Carro-Temboury
,
R.
Arppe
,
T.
Vosch
,
T. J.
Sørensen
,
An optical authentication system based on imaging of excitation-selected lanthanide luminescence
.
Sci. Adv.
4
,
e1701384
(
2018
).
4.
G.
Telasang
,
J. Dutta
Majumdar
,
G.
Padmanabham
,
I.
Manna
,
Structure–property correlation in laser surface treated AISI H13 tool steel for improved mechanical properties
,
Materials Science and Engineering: A
599
(
2014
)
255
267
5.
A.F.
Lasagni
,
T.
Roch
,
J.
Berger
,
T.
Kunze
,
V.
Lang
,
E.
Beyer
,
To use or not to use (direct laser interference patterning), that is the question
, in:
U.
Klotzbach
,
K.
Washio
,
C.B.
Arnold
(Eds.), SPIE LASE, SPIE,
2015
, p.
935115
.
6.
A.
Lasagni
,
T.
Roch
,
M.
Bieda
,
D.
Benke
,
E.
Beyer
,
High time surface functionalization using direct laser interference patterning, towards 1 m 2 /min fabrication time with sub-μm resolution
, in:
U.
Klotzbach
,
K.
Washio
,
C.B.
Arnold
(Eds.),
SPIE LASE, SPIE
,
2014
,
89680A
.
7.
T.
Dyck
,
Functional Surfaces by Laser Interference, LTJ 14
(
2017
)
16
19
.
8.
A.
Lasagni
,
Bringing the Direct Laser Interference Patterning Method to Industry
,
JLMN
10
(
2015
)
340
344
.
9.
D.
Guenther
,
J.
Valle
,
S.
Burgui
,
C.
Gil
,
C.
Solano
,
A.
Toledo-Arana
,
R.
Helbig
et al,
Direct laser interference patterning for decreased bacterial attachment
, in:
U.
Klotzbach
,
K.
Washio
,
C.B.
Arnold
(Eds.),
SPIE LASE, SPIE
,
2016
, p.
973611
.
10.
M.
Bieda
,
C.
Schmädicke
,
A.
Wetzig
,
A.
Lasagni
,
Direct laser interference patterning of planar and non- planar steels and their microstructural characterization
,
Met. Mater. Int.
19
(
2013
)
81
86
.
11.
M.
Steger
,
Mehrstrahlinterferenz zur direkten, großflächigen Nanostrukturierung durch Laserablation
. Dissertation, Aachen,
2017
.
12.
M.
Bieda
,
M.
Siebold
,
A.F.
Lasagni
,
Fabrication of sub-micron surface structures on copper, stainless steel and titanium using picosecond laser interference patterning
,
Applied Surface Science
387
(
2016
)
175
182
.
13.
M.
Bieda
,
E.
Beyer
,
A.F.
Lasagni
,
Direct Fabrication of Hierarchical Microstructures on Metals by Means of Direct Laser Interference Patterning
,
J. Eng. Mater. Technol.
132
(
2010
)
31015
.
14.
J.-H.
Klein-Wiele
,
P.
Simon
,
Fabrication of periodic nanostructures by phase-controlled multiple- beam interference
,
Appl. Phys. Lett.
83
(
2003
)
4707
4709
.
15.
M.
Steger
,
Measuring Method for the Interference Contrast of Multi-Beam-Interference
,
JLMN
9
(
2014
)
225
229
.
16.
B.N.
Chichkov
,
C.
Momma
,
S.
Nolte
,
F.
Alvensleben
,
A.
Tünnermann
,
Femtosecond, picosecond and nanosecond laser ablation of solids
,
Appl. Phys. A
63
(
1996
)
109
115
.
17.
S.M.
Metev
,
V.P.
Veiko
, Laser-Assisted Microtechnology,
Springer
,
Berlin, Heidelberg
,
1998
.
18.
C.
He
,
M.
Steger
,
A.
Gillner
,
Rapid nanostructuring using multi-beam-interference with consecutively overlapped ultrashort laser pulses
,
18th International Syposium on Laser Precision Microfabrication, LPM 2017
19.
Deutsches Kupferinstitut,
CuZn39Pb3
(
2005
).
20.
Deutsches Kupferinstitut,
CuZn39Pb2
(
2005
).
21.
P.G.
Klemens
, Editor:
O.
Madelung
,
G.K.
White
,
3.2.1 Binary alloys; 3.2.1.5 Cu-based alloys
, pp.
144
153
.
22.
Danka
Katrakova
,
Anwendungen der Orientierungsabbildenden Mikroskopie zur Gefügecharakterisierung kristalliner Werkstoffe
. Dissertation, Saarbrücken,
2002
.
23.
A.
Lasagni
,
C.
Holzapfel
,
F.
Mücklich
,
Periodic Pattern Formation of Intermetallic Phases with Long Range Order by Laser Interference Metallurgy
,
Adv. Eng. Mater.
7
(
2005
)
487
492
.
24.
Prof. Dr. rer. nat. Reinhart
Poprawe
M.A.
,
Lasertechnik II: Teil 2: Anwendungen der Lasertechnik
,
Aachen
,
2003
.
This content is only available via PDF.
You do not currently have access to this content.