Laser Metal Deposition (LMD) of Inconel 718 using a coaxial nozzle is investigated by high-speed imaging. The interaction of individual powder grains with the laser induced melt pool surface and, finally, their catchment in the LMD track is observed. Powder catchment trends are explained by interpreting physical phenomena, such as the melt flow and surface tension. Distinct zones for powder catchment are categorized depending on the position of initial interaction between powder grains and the melt pool. Particles introduced outside the melt pool ricochet and do not attach to the clad. Particles arriving outside the laser spot, onto the solidifying skin of the melt pool, are caught, and may incorporate. Some particles may remain on the clad surface, as surface roughness on the built part. Particles interacting with the laser-irradiated region of the melt pool tend to move towards its center, and readily incorporate into the melt. Quantitative analyses of high-speed videos are carried out to measure incorporation time of powder grains in the melt pool, their velocity, and distance travelled.

1.
Brückner
,
F.
, &
Lepski
,
D.
(
2017
)
The Theory of Laser Materials Processing
,
Springer International Publishing
,
Cham
.
2.
Lin
,
J.
, &
Steen
,
W. M.
(
1998
)
Design Characteristics and Development of a Nozzle for Coaxial Laser Cladding
,
J. Laser Appl.
,
10
(
2
),
55
63
.
3.
Hu
,
Y. P.
,
Chen
,
C. W.
, &
Mukherjee
,
K.
(
1998
)
Analysis of Powder Feeding Systems on Quality of Laser Cladding
,
Powder Metall. Part. Mater.
,
3
,
21
.
4.
Powell
,
J.
(
1983
)
Laser Cladding
,
Imperial College of Science and Technology
,
London
.
5.
Lin
,
J.
(
1999
)
A Simple Model of Powder Catchment in Coaxial Laser Cladding
,
Opt. Laser Technol.
,
31
(
3
),
233
238
.
6.
Partes
,
K.
(
2009
)
Analytical Model of the Catchment Efficiency in High Speed Laser Cladding
,
Surf. Coatings Technol.
,
204
(
3
),
366
371
.
7.
Fathi
,
A.
,
Toyserkani
,
E.
,
Khajepour
,
A.
, &
Durali
,
M.
(
2006
)
Prediction of Melt Pool Depth and Dilution in Laser Powder Deposition
,
J. Phys. D. Appl. Phys.
,
39
(
12
),
2613
2623
.
8.
Gedda
,
H.
,
Powell
,
J.
,
Wahlstrom
,
G.
,
Li
,
W. B.
,
Engstrom
,
H.
, &
Magnusson
,
C.
(
2002
)
Energy Redistribution during CO2 Laser Cladding
,
J. Laser Appl.
,
14
(
2002
),
78
82
.
9.
Kumar
,
A.
, &
Roy
,
S.
(
2009
)
Effect of Three-Dimensional Melt Pool Convection on Process Characteristics during Laser Cladding
,
Comput. Mater. Sci.
,
46
(
2
),
495
506
.
10.
Costa
,
L.
, &
Vilar
,
R.
(
2009
)
Laser Powder Deposition
,
Rapid Prototyp. J.
,
15
(
4
),
264
279
.
11.
Liu
,
H.-R.
,
Gao
,
P.
, &
Ding
,
H.
(
2017
)
Fluid– structure Interaction Involving Dynamic Wetting: 2D Modeling and Simulations
,
J. Comput. Phys.
,
348
,
45
65
.
12.
Eriksson
,
I.
,
Powell
,
J.
, &
Kaplan
,
A. F. H.
(
2013
)
Melt Behavior on the Keyhole Front during High Speed Laser Welding
,
Opt. Lasers Eng.
,
51
(
6
),
735
740
.
13.
Frostevarg
,
J.
, &
Kaplan
,
A. F. H.
(
2014
)
Undercuts in Laser Arc Hybrid Welding
,
Phys. Procedia
,
56(C)
,
663
672
.
14.
Pocorni
,
J.
,
Powell
,
J.
,
Frostevarg
,
J.
, &
Kaplan
,
A. F. H.
(
2018
)
Dynamic Laser Piercing of Thick Section Metals
,
Opt. Lasers Eng.
,
100
(June
2017
),
82
89
.
15.
Tsotridis
,
G.
,
Rother
,
H.
, &
Hondros
,
E. D.
(
1989
)
Marangoni Flow and the Shapes of Laser-Melted Pools
,
Sci. Nat.
,
76
(
5
),
216
218
.
16.
Lee
,
Y. S.
,
Nordin
,
M.
,
Babu
,
S. S.
,
Farson
,
D. F.
(
2014
)
Influence of Fluid Convection on Weld Pool Formation in Laser Cladding
,
Weld. Res.
,
93
(August),
292
300
.
17.
Brueckner
,
F.
,
Riede
,
M.
,
Müller
,
M.
,
Marquardt
,
F.
,
Willner
,
R.
,
Seidel
,
A.
,
Lopéz
,
E.
,
Leyens
,
C.
, &
Beyer
,
E.
(
2018
)
Enhanced Manufacturing Possibilities Using Multi-Materials in Laser Metal Deposition
,
J. Laser Appl.
,
30
(
3
),
32308
.
18.
Kaplan
,
A. F. H.
, &
Groboth
,
G.
(
2001
)
Process Analysis of Laser Beam Cladding
,
J. Manuf. Sci. Eng.
,
123
(
4
),
609
614
.
19.
Gedda
,
H.
,
Kaplan
,
A.
, &
Powell
,
J.
(
2005
)
Melt-Solid Interactions in Laser Cladding and Laser Casting
,
Metall. Mater. Trans. B
,
36
(
5
),
683
689
.
This content is only available via PDF.
You do not currently have access to this content.