In this paper, a two-temperature semiconductor model was used to investigate the non-equilibrium thermal transport in Ge2Sb2Te5 thin films caused by irradiation with ultrashort laser pulses ranging from femto- to picoseconds. Photo-excited carriers were considered based on the semiconductor absorbing mechanism in a self-consistent model. As a general rule, shorter pulses led to faster thermal equilibrium between carrier and lattice systems. However, a minimum time (∼ 80 ps) to achieve thermal equilibrium between the carrier and lattice system was obtained for femtosecond laser pulses, as the thermal equilibrium rate was mainly determined by material properties instead of the pulse width, which significantly affected the ultrafast temperature rise of the carrier system. The carrier density had a strong influence to the temperatures of both the carrier and lattice systems, and photo-excited carriers played an important role in the first 40 ps during the thermal equilibrium under the femtosecond laser pulse.

1.
B. N.
Chichkov
,
C.
Momma
,
S.
Nolte
,
F. V.
Alvensleben
, and
A.
Tünnermann
(
1996
)
Appl. Phys. A
63
,
109
.
2.
T. H.
Her
,
R. J.
Finlay
,
C.
Wu
and
E.
Mazur
(
2000
)
Appl. Phys. A
,
70
,
383
.
3.
Q.
Hao
,
G.
Zhao
, and
W.
Qi
(
2007
)
Fundamental Problems of Optoelectronics and Microelectronics III International Society for Optics and Photonics
36
,
9
pp.
5.
N. I.
Xiao-Chang
, and
Q. Y.
Wang
(
2004
)
Chin. J. Lasers
31
,
277
.
6.
C. D.
Li
,
D. L.
Wang
,
L.
Luo
,
H.
Yang
,
Z. J.
Xia
, and
Q. H.
Gong
(
2001
)
Chin. Phys. Lett.
18
,
541
.
8.
D.
Lencer
,
M.
Salinga
, and
M.
Wuttig
(
2011
)
Adv. Materials
23
,
2030
.
9.
S. R.
Ovshinsky
(
1968
)
Phys. Rev. Lett.
21
,
1450
.
10.
T. Q.
Qiu
, and
C. L.
Tien
(
1993
)
J. Heat Tran.
115
,
835
.
11.
S. I.
Anisimov
,
B. L.
Kapeliovich
, and
T. L.
Perelman
(
1974
)
Zhurnal Eksperimentalnoi I Teroreticheskoi Fiziki
66
,
776
.
12.
J. K.
Chen
, and
J. E.
Beraun
(
2001
)
Num. Heat Tran. Appl.
40
,
1
.
13.
D
Von Der
,
K.
Sokolowski-Tinten
, and
J.
Bialkowski
(
1997
)
Appl. Surf. Sci.
1
,
109
.
14.
Sundaram
S. K.
, and
Mazur
E.
(
2002
)
Nature Material
24
,
217
.
15.
C. N.
Afonso
,
J.
Solis
,
F.
Catalina
, and
C.
Kalpouzos
(
1992
)
Appl. Phys. Lett.
60
,
3123
.
16.
V.
Weidenhof
,
I.
Friedrich
,
S.
Ziegler
, and
M.
Wuttig
(
2001
)
J. Appl. Phys.
89
,
3168
.
17.
N.
Bai
,
F. R.
Liu
,
X. X.
Han
,
Z.
Zhu
,
F.
Liu
, and
X.
Lin
(
2014
)
Appl. Surf. Sci.
316
,
202
.
18.
Waldecker
,
L.
,
Miller
,
T. A.
,
Rudé
,
M.
,
Bertoni
,
R.
,
Osmond
,
J.
, and
Pruneri
,
V.
, et al (
2015
)
Nature Material
,
10
,
14
19.
J. P.
Callan
,
M. T.
Kim
,
C. A. D
Roeser
,
E.
Mazur
,
J.
Solis
and
J.
Siegel
(
2001
)
Phys. Rev. Lett.
86
,
3650
.
20.
J.
Siegel
,
C. N.
Afonso
, and
J.
Solis
(
1999
)
Appl. Phys. Lett.
,
75
,
3102
.
21.
J.
Siegel
,
W.
Gawelda
,
D.
Puerto
and
C.
Dorronsoro
(
2008
)
J. Appl. Phys.
,
3516
023516
,
103
.
22.
M. J.
Shu
,
I.
Chatzakis
,
Y.
Kuo
,
P.
Zalden
and
A. M.
Lindenberg
(
2013
)
Appl. Phys. Lett.
,
102
,
201903
.
23.
F. R.
Liu
,
N.
Bai
,
J. J.
Zhao
,
X. X.
Han
, and
W. P.
Zhou
and
X.
Lin
(
2013
)
Appl. Phys. Lett.
103
,
051905
.
24.
L. S.
Ruddock
, and
D.J.
Bradley
(
1976
)
Appl. Phys. Lett.
29
,
296
.
25.
J. K.
Chen
,
D. Y.
Tzou
, and
J. E.
Beraun
(
2005
)
Int. J. Heat Mass Tran.
48
,
501
.
26.
J. H.
Bechtel
(
1975
)
J. Appl. Phys
46
,
1585
.
27.
X. L.
Li
, J. L., and
X. Y.
Tao
(
2007
)
Laser Tech.
31
,
6
.
28.
J. K.
Chen
,
D. Y.
Tzou
, and
J. E.
Beraun
(
2006
)
Int. J. Heat Mass Tran.
49
,
307
.
29.
D.
von der Linde
and
H.
Schüller
(
1996
)
J. Opt. Soc. Am. B
13
,
216
.
31.
H.
Huang
,
F.
Zuo
,
F.
Zhai
,
Y.
Wang
,
T.
Liu
and
Y.
Wu
(
2009
)
J. Appl. Phys.
106
,
063501
.
32.
M.
Wuttig
, and
N.
Yamada
(
2007
)
Nature Materials
6
,
824
.
This content is only available via PDF.
You do not currently have access to this content.