The laser-induced reduction of graphene oxide (GO) was studied by using a 405 nm blue-violet semiconductor laser. The morphology and the conductivity of the reduced grahene oxide (rGO) film were remarkably influenced by the laser power. An rGO/GO interdigitated microelectrode was fabricated on a polymer substrate by laser direct writing. The application of the rGO/GO interdigitated microelectrode to a humidity sensor and the performance were demonstrated.
REFERENCES
1.
C
Hutchings
, I. M.
& Martin
, G. D.
, Ed. (2012
) Inkjet Technology for Digital Fabrication
, Willy
, 1
–390
.2.
Rosa
P.
, Câmara
A.
& Gouveia
C.
, “The Potential of Printed Electronics and Personal Fabrication in Driving the Internet of Things
” (2105
) Open J. Internet Of Things (OJIOT)
, 1
, 16
–36
.3.
Mukhopadhyay
, S.C.
(2015
) “Wearable Sensors for Human Activity Monitoring: A Review
”, IEEE Sensors J.
, 15
, 1321
–1330
.4.
Khan
, S.
, Lorenzelli
, L.
& Dahiya
, R. S.
, (2015
) “Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review
”, IEEE Sensors J.
, 15
, 3164
–3185
.5.
Zanella
, A.
, Bui
, N.
, Castellani
, A.
, Vangelista
, L.
& Zorzi
, M.
(2014
) “Internet of Things for Smart Cities
”, IEEE Internet of Things J.
, 1
, 22
–32
.6.
Qin
, G.
& Watanabe
, A.
(2014
) Conductive network structure formed by laser sintering of silver nanoparticles
, Journal of Nanoparticle Research
, 16
, 2684
.7.
Aminuzzaman
, M.
, Watanabe
, A.
& Miyashita
, T.
(2015
) Laser Direct Writing of Conductive Silver Micropatterns on Transparent Flexible Double-Decker-Shaped Polysilsesquioxane Film Using Silver Nanoparticle Ink
, Journal of Electronic Materials
, 44
, 4811
–4818
.8.
Qin
, G.
, Fan
, L.
& Watanabe
, A.
(2016
) Formation of indium tin oxide film by wet process using laser sintering
, Journal Of Materials Processing Technology
, 227
, 16
–23
.9.
Qin
G.
, Watanbe
, A.
, Tsukamoto
, H.
& Yonezawa
, T.
(2014
) Copper film prepared from copper fine particle paste by laser sintering at room temperature: Influences of sintering atmosphere on the morphology and resistivity
, Japanese Journal Of Applied Physics
, 53
, 096501
.10.
Aminuzzaman
, M.
, Watanabe
, A.
& Miyashita
, T.
(2010
) Direct writing of conductive silver micropatterns on flexible polyimide film by laser-induced pyrolysis of silver nanoparticle-dispersed film
, Journal of Nanoparticle Research
, 12
, 931
–938
.11.
Cai
, J.
, Lv
, C.
& Watanabe
, A.
(2016
) Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment
, Journal of Materials Chemistry A
, 4
, 1671
–1679
.12.
Cai
, J.
, Lv
, C.
& Watanabe
, A.
(2016
) Laser direct writing of high-performance flexible all-solid-state carbon micro-supercapacitors for an on-chip self-powered photodetection system
, Nano Energy
, 30
, 790
–800
.13.
Cai
, J.
, Watanabe
, A.
& Lv
, C.
(2017
) Laser direct writing of carbon/Au composite electrodes for high-performance micro-supercapacitors
. Proc. SPIE 10092, Laser-based Micro- and Nanoprocessing XI, 100920P
.14.
Cai
, J.
, Lv
, C.
& Watanabe
, A.
(2017
) High-performance all-solid-state flexible carbon/TiO2 micro-supercapacitors with photo-rechargeable capability
, RSC Advances
, 7
, 415
–422
.15.
Gao
, W.
, Singh
, N.
, Song
, L.
, Liu
, Z.
, Reddy
, A.L.M.
, Ci
, L.
, Vajtai
, R.
, Zhang
, Q.
, Wei
, B.
& Ajayan
, P.M.
(2011
) Direct laser writing of micro-supercapacitors on hydrated graphite oxide films
, Nature Nanotechnology
, 6
, 496
–500
.16.
El-Kady
, M.F.
, Strong
, V.
, Dubin
, S.
& Kaner
, R.B.
(2012
) Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors
, Science
, 335
, 1326
–1330
.17.
El-Kady
, M.F.
& Kaner
, R.B.
(2013
) Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage
, Nature Communications
, 4
, 1475
.18.
Zhu
, J.
, Yang
, D.
, Yin
, Z.
, Yan
, Q.
& Zhang
, H.
(2014
) Graphene and Graphene-Based Materials for Energy Storage Applications
, Small
, 10
, 3480
–3498
.19.
Wang
, X.
& Shi
, G.
(2015
) Flexible graphene devices related to energy conversion and storage
, Energy & Environmental Science
, 8
, 790
–823
.20.
Kim
, Y.H.
, Kim
, S.J.
, Kim
, Y.-J.
, Shim
, Y.-S.
, Kim
, S.Y.
, Hong
, B.H.
& Jang
, H.W.
(2015
) Self-Activated Transparent All-Graphene Gas Sensor with Endurance to Humidity and Mechanical Bending
, ACS Nano
, 9
, 10453
–10460
.21.
Hwang
, S.-H.
, Kang
, D.
, Ruoff
, R.S.
, Shin
, H.S.
& Park
, Y.-B.
(2014
) Poly(vinyl alcohol) Reinforced and Toughened with Poly(dopamine)-Treated Graphene Oxide, and Its Use for Humidity Sensing
, ACS Nano
, 8
, 6739
–6747
.22.
Pak
, Y.
, Kim
, S.-M.
, Jeong
, H.
, Kang
, C.G.
, Park
, J.S.
, Song
, H.
, Lee
, R.
, Myoung
, N.
, Lee
, B.H.
, Seo
, S.
, Kim
, J.T.
& Jung
, G.-Y.
(2014
) Palladium-Decorated Hydrogen-Gas Sensors Using Periodically Aligned Graphene Nanoribbons
, Acs Applied Materials & Interfaces
, 6
, 13293
–13298
.23.
Wang
, X.
, Xiong
, Z.
, Liu
, Z.
& Zhang
, T.
(2015
) Exfoliation at the Liquid/Air Interface to Assemble Reduced Graphene Oxide Ultrathin Films for a Flexible Noncontact Sensing Device
, Advanced Materials
, 27
, 1370
–1375
.24.
Su
, P.-G.
& Chiou
, C.-F.
(2014
) Electrical and humidity-sensing properties of reduced graphene oxide thin film fabricated by layer-by-layer with covalent anchoring on flexible substrate
, Sensors and Actuators B: Chemical
, 200
, 9
–18
.25.
Yu
, H.-W.
, Kim
, H.K.
, Kim
, T.
, Bae
, K.M.
, Seo
, S.M.
, Kim
, J.-M.
, Kang
, T.J.
& Kim
, Y.H.
(2014
) Self-Powered Humidity Sensor Based on Graphene Oxide Composite Film Intercalated by Poly(Sodium 4-Styrenesulfonate
), Acs Applied Materials & Interfaces
, 6
, 8320
–8326
.26.
Borini
, S.
, White
, R.
, Wei
, D.
, Astley
, M.
, Haque
, S.
, Spigone
, E.
, Harris
, N.
, Kivioja
, J.
& Ryhänen
, T.
(2013
) Ultrafast Graphene Oxide Humidity Sensors
, ACS Nano
, 7
, 11166
–11173
.27.
Lin
, W.-D.
, Chang
, H.-M.
& Wu
, R.-J.
(2013
) Applied novel sensing material graphene/polypyrrole for humidity sensor
, Sensors and Actuators B: Chemical
, 181
, 326
–331
.28.
Niu
, Z.
, Zhang
, L.
, Liu
, L.
, Zhu
, B.
, Dong
, H.
& Chen
, X.
(2013
) All-Solid-State Flexible Ultrathin Micro-Supercapacitors Based on Graphene
, Advanced Materials
, 25
, 4035
–4042
.29.
Wu
, Z.-S.
, Parvez
, K.
, Winter
, A.
, Vieker
, H.
, Liu
, X.
, Han
, S.
, Turchanin
, A.
, Feng
, X.
& Müllen
, K.
(2014
) Layer-by-Layer Assembled Heteroatom-Doped Graphene Films with Ultrahigh Volumetric Capacitance and Rate Capability for Micro-Supercapacitors
, Advanced Materials
, 26
, 4552
–4558
.30.
Wu
, Z.-K.
, Lin
, Z.
, Li
, L.
, Song
, B.
, Moon
, K.-s.
, Bai
, S.-L.
& Wong
, C.-P.
(2014
) Flexible micro-supercapacitor based on in-situ assembled graphene on metal template at room temperature
, Nano Energy
, 10
, 222
–228
.31.
Lin
, J.
, Peng
, Z.
, Liu
, Y.
, Ruiz-Zepeda
, F.
, Ye
, R.
, Samuel
, E.L.G.
, Yacaman
, M.J.
, Yakobson
, B.I.
& Tour
, J.M.
(2014
) Laser-induced porous graphene films from commercial polymers
, Nature Communications
, 5
, 5714
.32.
Peng
, Z.
, Ye
, R.
, Mann
, J.A.
, Zakhidov
, D.
, Li
, Y.
, Smalley
, P.R.
, Lin
, J.
& Tour
, J.M.
(2015
) Flexible Boron-Doped Laser-Induced Graphene Micro-supercapacitors
, ACS Nano
, 9
, 5868
–5875
.33.
Li
, L.
, Zhang
, J.
, Peng
, Z.
, Li
, Y.
, Gao
, C.
, Ji
, Y.
, Ye
, R.
, Kim
, N.D.
, Zhong
, Q.
, Yang
, Y.
, Fei
, H.
, Ruan
, G.
& Tour
, J.M.
(2016
) High-Performance Pseudocapacitive Microsupercapacitors from Laser-Induced Graphene
, Advanced Materials
, 28
, 838
–845
.34.
Watanabe
, A
& Cai
, J.
(2017
) On Demand Process Based on Laser Direct Writing and the Sensor Application
, J. Photopolym. Sci. Tech.
, 30
, 341
–443
.35.
Zhan
D.
, Ni
Z.
, Chen
W.
, Sun
Li
, Luo
Z.
, Lai
, Z.
, Lai
, L.
, Yu
T.
, Wee
, A. T. S.
& Shen
Z.
(2011
) Electronic structure of graphite oxide and thermally reduced graphite oxide
, CARBON
49
, 1362
–1366
36.
Pimenta
, M. A.
, Dresselhaus
, G.
, Dresselhaus
, M. S.
, Cancado, L. G. A.
Jorioa
, A. & Saito
, R.
(2007
) Studying disorder in graphite-based systems by Raman spectroscopy
, Phys. Chem. Chem. Phys.
, 9
, 1276
–1291
.
This content is only available via PDF.
© 2017 Laser Institute of America.
2017
Laser Institute of America
You do not currently have access to this content.