The laser-induced reduction of graphene oxide (GO) was studied by using a 405 nm blue-violet semiconductor laser. The morphology and the conductivity of the reduced grahene oxide (rGO) film were remarkably influenced by the laser power. An rGO/GO interdigitated microelectrode was fabricated on a polymer substrate by laser direct writing. The application of the rGO/GO interdigitated microelectrode to a humidity sensor and the performance were demonstrated.

1.
C
Hutchings
,
I. M.
&
Martin
,
G. D.
, Ed. (
2012
)
Inkjet Technology for Digital Fabrication
,
Willy
,
1
390
.
2.
Rosa
P.
,
Câmara
A.
&
Gouveia
C.
, “
The Potential of Printed Electronics and Personal Fabrication in Driving the Internet of Things
” (
2105
)
Open J. Internet Of Things (OJIOT)
,
1
,
16
36
.
3.
Mukhopadhyay
,
S.C.
(
2015
) “
Wearable Sensors for Human Activity Monitoring: A Review
”,
IEEE Sensors J.
,
15
,
1321
1330
.
4.
Khan
,
S.
,
Lorenzelli
,
L.
&
Dahiya
,
R. S.
, (
2015
) “
Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review
”,
IEEE Sensors J.
,
15
,
3164
3185
.
5.
Zanella
,
A.
,
Bui
,
N.
,
Castellani
,
A.
,
Vangelista
,
L.
&
Zorzi
,
M.
(
2014
) “
Internet of Things for Smart Cities
”,
IEEE Internet of Things J.
,
1
,
22
32
.
6.
Qin
,
G.
&
Watanabe
,
A.
(
2014
)
Conductive network structure formed by laser sintering of silver nanoparticles
,
Journal of Nanoparticle Research
,
16
,
2684
.
7.
Aminuzzaman
,
M.
,
Watanabe
,
A.
&
Miyashita
,
T.
(
2015
)
Laser Direct Writing of Conductive Silver Micropatterns on Transparent Flexible Double-Decker-Shaped Polysilsesquioxane Film Using Silver Nanoparticle Ink
,
Journal of Electronic Materials
,
44
,
4811
4818
.
8.
Qin
,
G.
,
Fan
,
L.
&
Watanabe
,
A.
(
2016
)
Formation of indium tin oxide film by wet process using laser sintering
,
Journal Of Materials Processing Technology
,
227
,
16
23
.
9.
Qin
G.
,
Watanbe
,
A.
,
Tsukamoto
,
H.
&
Yonezawa
,
T.
(
2014
)
Copper film prepared from copper fine particle paste by laser sintering at room temperature: Influences of sintering atmosphere on the morphology and resistivity
,
Japanese Journal Of Applied Physics
,
53
,
096501
.
10.
Aminuzzaman
,
M.
,
Watanabe
,
A.
&
Miyashita
,
T.
(
2010
)
Direct writing of conductive silver micropatterns on flexible polyimide film by laser-induced pyrolysis of silver nanoparticle-dispersed film
,
Journal of Nanoparticle Research
,
12
,
931
938
.
11.
Cai
,
J.
,
Lv
,
C.
&
Watanabe
,
A.
(
2016
)
Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment
,
Journal of Materials Chemistry A
,
4
,
1671
1679
.
12.
Cai
,
J.
,
Lv
,
C.
&
Watanabe
,
A.
(
2016
)
Laser direct writing of high-performance flexible all-solid-state carbon micro-supercapacitors for an on-chip self-powered photodetection system
,
Nano Energy
,
30
,
790
800
.
13.
Cai
,
J.
,
Watanabe
,
A.
&
Lv
,
C.
(
2017
)
Laser direct writing of carbon/Au composite electrodes for high-performance micro-supercapacitors
.
Proc. SPIE 10092, Laser-based Micro- and Nanoprocessing XI, 100920P
.
14.
Cai
,
J.
,
Lv
,
C.
&
Watanabe
,
A.
(
2017
)
High-performance all-solid-state flexible carbon/TiO2 micro-supercapacitors with photo-rechargeable capability
,
RSC Advances
,
7
,
415
422
.
15.
Gao
,
W.
,
Singh
,
N.
,
Song
,
L.
,
Liu
,
Z.
,
Reddy
,
A.L.M.
,
Ci
,
L.
,
Vajtai
,
R.
,
Zhang
,
Q.
,
Wei
,
B.
&
Ajayan
,
P.M.
(
2011
)
Direct laser writing of micro-supercapacitors on hydrated graphite oxide films
,
Nature Nanotechnology
,
6
,
496
500
.
16.
El-Kady
,
M.F.
,
Strong
,
V.
,
Dubin
,
S.
&
Kaner
,
R.B.
(
2012
)
Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors
,
Science
,
335
,
1326
1330
.
17.
El-Kady
,
M.F.
&
Kaner
,
R.B.
(
2013
)
Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage
,
Nature Communications
,
4
,
1475
.
18.
Zhu
,
J.
,
Yang
,
D.
,
Yin
,
Z.
,
Yan
,
Q.
&
Zhang
,
H.
(
2014
)
Graphene and Graphene-Based Materials for Energy Storage Applications
,
Small
,
10
,
3480
3498
.
19.
Wang
,
X.
&
Shi
,
G.
(
2015
)
Flexible graphene devices related to energy conversion and storage
,
Energy & Environmental Science
,
8
,
790
823
.
20.
Kim
,
Y.H.
,
Kim
,
S.J.
,
Kim
,
Y.-J.
,
Shim
,
Y.-S.
,
Kim
,
S.Y.
,
Hong
,
B.H.
&
Jang
,
H.W.
(
2015
)
Self-Activated Transparent All-Graphene Gas Sensor with Endurance to Humidity and Mechanical Bending
,
ACS Nano
,
9
,
10453
10460
.
21.
Hwang
,
S.-H.
,
Kang
,
D.
,
Ruoff
,
R.S.
,
Shin
,
H.S.
&
Park
,
Y.-B.
(
2014
)
Poly(vinyl alcohol) Reinforced and Toughened with Poly(dopamine)-Treated Graphene Oxide, and Its Use for Humidity Sensing
,
ACS Nano
,
8
,
6739
6747
.
22.
Pak
,
Y.
,
Kim
,
S.-M.
,
Jeong
,
H.
,
Kang
,
C.G.
,
Park
,
J.S.
,
Song
,
H.
,
Lee
,
R.
,
Myoung
,
N.
,
Lee
,
B.H.
,
Seo
,
S.
,
Kim
,
J.T.
&
Jung
,
G.-Y.
(
2014
)
Palladium-Decorated Hydrogen-Gas Sensors Using Periodically Aligned Graphene Nanoribbons
,
Acs Applied Materials & Interfaces
,
6
,
13293
13298
.
23.
Wang
,
X.
,
Xiong
,
Z.
,
Liu
,
Z.
&
Zhang
,
T.
(
2015
)
Exfoliation at the Liquid/Air Interface to Assemble Reduced Graphene Oxide Ultrathin Films for a Flexible Noncontact Sensing Device
,
Advanced Materials
,
27
,
1370
1375
.
24.
Su
,
P.-G.
&
Chiou
,
C.-F.
(
2014
)
Electrical and humidity-sensing properties of reduced graphene oxide thin film fabricated by layer-by-layer with covalent anchoring on flexible substrate
,
Sensors and Actuators B: Chemical
,
200
,
9
18
.
25.
Yu
,
H.-W.
,
Kim
,
H.K.
,
Kim
,
T.
,
Bae
,
K.M.
,
Seo
,
S.M.
,
Kim
,
J.-M.
,
Kang
,
T.J.
&
Kim
,
Y.H.
(
2014
)
Self-Powered Humidity Sensor Based on Graphene Oxide Composite Film Intercalated by Poly(Sodium 4-Styrenesulfonate
),
Acs Applied Materials & Interfaces
,
6
,
8320
8326
.
26.
Borini
,
S.
,
White
,
R.
,
Wei
,
D.
,
Astley
,
M.
,
Haque
,
S.
,
Spigone
,
E.
,
Harris
,
N.
,
Kivioja
,
J.
&
Ryhänen
,
T.
(
2013
)
Ultrafast Graphene Oxide Humidity Sensors
,
ACS Nano
,
7
,
11166
11173
.
27.
Lin
,
W.-D.
,
Chang
,
H.-M.
&
Wu
,
R.-J.
(
2013
)
Applied novel sensing material graphene/polypyrrole for humidity sensor
,
Sensors and Actuators B: Chemical
,
181
,
326
331
.
28.
Niu
,
Z.
,
Zhang
,
L.
,
Liu
,
L.
,
Zhu
,
B.
,
Dong
,
H.
&
Chen
,
X.
(
2013
)
All-Solid-State Flexible Ultrathin Micro-Supercapacitors Based on Graphene
,
Advanced Materials
,
25
,
4035
4042
.
29.
Wu
,
Z.-S.
,
Parvez
,
K.
,
Winter
,
A.
,
Vieker
,
H.
,
Liu
,
X.
,
Han
,
S.
,
Turchanin
,
A.
,
Feng
,
X.
&
Müllen
,
K.
(
2014
)
Layer-by-Layer Assembled Heteroatom-Doped Graphene Films with Ultrahigh Volumetric Capacitance and Rate Capability for Micro-Supercapacitors
,
Advanced Materials
,
26
,
4552
4558
.
30.
Wu
,
Z.-K.
,
Lin
,
Z.
,
Li
,
L.
,
Song
,
B.
,
Moon
,
K.-s.
,
Bai
,
S.-L.
&
Wong
,
C.-P.
(
2014
)
Flexible micro-supercapacitor based on in-situ assembled graphene on metal template at room temperature
,
Nano Energy
,
10
,
222
228
.
31.
Lin
,
J.
,
Peng
,
Z.
,
Liu
,
Y.
,
Ruiz-Zepeda
,
F.
,
Ye
,
R.
,
Samuel
,
E.L.G.
,
Yacaman
,
M.J.
,
Yakobson
,
B.I.
&
Tour
,
J.M.
(
2014
)
Laser-induced porous graphene films from commercial polymers
,
Nature Communications
,
5
,
5714
.
32.
Peng
,
Z.
,
Ye
,
R.
,
Mann
,
J.A.
,
Zakhidov
,
D.
,
Li
,
Y.
,
Smalley
,
P.R.
,
Lin
,
J.
&
Tour
,
J.M.
(
2015
)
Flexible Boron-Doped Laser-Induced Graphene Micro-supercapacitors
,
ACS Nano
,
9
,
5868
5875
.
33.
Li
,
L.
,
Zhang
,
J.
,
Peng
,
Z.
,
Li
,
Y.
,
Gao
,
C.
,
Ji
,
Y.
,
Ye
,
R.
,
Kim
,
N.D.
,
Zhong
,
Q.
,
Yang
,
Y.
,
Fei
,
H.
,
Ruan
,
G.
&
Tour
,
J.M.
(
2016
)
High-Performance Pseudocapacitive Microsupercapacitors from Laser-Induced Graphene
,
Advanced Materials
,
28
,
838
845
.
34.
Watanabe
,
A
&
Cai
,
J.
(
2017
)
On Demand Process Based on Laser Direct Writing and the Sensor Application
,
J. Photopolym. Sci. Tech.
,
30
,
341
443
.
35.
Zhan
D.
,
Ni
Z.
,
Chen
W.
,
Sun
Li
,
Luo
Z.
,
Lai
,
Z.
,
Lai
,
L.
,
Yu
T.
,
Wee
,
A. T. S.
&
Shen
Z.
(
2011
)
Electronic structure of graphite oxide and thermally reduced graphite oxide
,
CARBON
49
,
1362
1366
36.
Pimenta
,
M. A.
,
Dresselhaus
,
G.
,
Dresselhaus
,
M. S.
, Cancado,
L. G. A.
Jorioa
, A. &
Saito
,
R.
(
2007
)
Studying disorder in graphite-based systems by Raman spectroscopy
,
Phys. Chem. Chem. Phys.
,
9
,
1276
1291
.
This content is only available via PDF.
You do not currently have access to this content.