In order to ensure the competitiveness of photovoltaic systems in comparison to conventional fossil fuels, the production costs of the PV modules must be reduced and the efficiency of the solar cells increased. Therefore, silicon solar cells are structured for efficiency enhancement through absorption optimization by means of laser and plasma treatment.

Anti-reflect layers on silicon solar cells lead to reduced reflections on the cell surface and thus to an increase in the efficiency of solar cells. In order to exploit the energy potential of solar radiation, reflection on solar cells must be further minimized and absorption maximized. To achieve minimum reflection and maximum absorption in silicon solar cells, surfaces of solar cells are processed by means of laser radiation and plasma etching methods. Processing with laser radiation allows a defined periodic microstructuring of the surface, which promotes the absorption of the energy-intensive components of the solar radiation. In a subsequent plasma etching process, a nanostructure is applied on this microstructure, which reduces the reflection. Together, this is a combination of superficial structures that increase the efficiency of silicon solar cells, without the need of anti-reflect layers. To achieve a minimum reflection and maximum absorption, polycrystalline silicon wafers sliced by slurry paste and diamond wire were treated with laser and plasma analyzed by UV/VIS spectroscopy and scanning electron microscopy.

1.
Shockley
,
W.
,
Queisser
,
H. J.
, (
1961
).
Detailed Balance Limit of Efficiency of p-n Junction Solar Cells
.
Journal of Applied Physics.
Vol.
32
, No.
3
, p.
510
519
. ISSN: 0021-8979; E-ISSN: 1089-7550; DOI:
2.
Luque
,
A.
,
Marti
,
A.
, (
2010
).
Electron-phonon energy transfer in hot-carrier solar cells
.
Solar Energy Materials and Solar Cells.
Vol.
94
, No.
2
, p.
287
296
. ISSN: 0927-0248; DOI:
3.
Vossler
,
A.
,
Hirsch
B.
,
Gordon
J.M.
, (
2010
).
Is Auger recombination the ultimate performance limiter in concentrator solar cells?
Applied Physics Letters.
Vol.
97
, No.
19
. ISSN: 0003-6951; E-ISSN: 1077-3118; DOI:
4.
Queisser
,
H.J.
, (
2009
)
Detailed Balance Limit of Efficiency of p-n Junction Solar Cells
.
Material Science and Engineering B.
Vol.
159-160
, p.
322
328
5.
Four Peaks Technologies
(
2011
).
The Shockley Queisser Efficiency Limit
. Available online at: http://www.solarcellcentral.com/limits_page.html [11.07.2017]
6.
Mertens
,
K.
(
Carl Hanser Verlag
). (
2011
).
Photovoltaik - Lehrbuch zu Grundlagen, Technologie und Praxis
. ISBN13: 978-3-446-43411-0; ISBN13: 978-3-446-43410-3
7.
Spondeus Solar
(
2017
).
Antireflexschicht – entspiegelt Ihre PV-Module
. Available online at: https://www.photovoltaiksolarstrom.de/photovoltaiklexikon/antireflexschicht [11.07.2017]
8.
Panek
P.
,
Lipinski
M.
,
Dutkiewicz
J.
(
2005
)
Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells
.
Journal of Materials Science
, Vol.
40
, No.
6
, pp.
1459
1463
. ISSN: 0022-2461; E-ISSN: 1573-4803; DOI:
9.
Wang
L.
,
Wang
F.
,
Zhang
X.
,
Wang
N.
,
Jiang
Y.
,
Hao
Q.
,
Zhao
Y.
(
2014
).
Improving efficiency of silicon heterojunction solar cells by surface texturing of silicon wafers using tetramethylammonium hydroxide
.
Journal of Power Sources
, Vol.
268
, pp.
619
624
. ISSN: 0378-7753; DOI:
10.
Kulesza
G.
,
Panek
P.
,
Zieba
P.
(
2013
)
Silicon solar cells efficiency improvement by the wet chemical texturization in the HF/HNO3/diluent solution
.
Archives of Metallurgy and Materials
, Vol.
58
, No.
1
, pp.
291
295
. ISSN: 1733-3490
11.
Kray
D.
,
Schumann
M.
,
Eyer
A.
,
Willeke
G.P.
,
Kübler
R.
,
Beinert
J.
,
Kleer
G.
(
2006
)
Solar wafer slicing with loose and fixed grains
.
2006 IEEE 4th World Conference on Photovoltaic Energy Conference
, Vol.
1
, pp.
948
951
. ISBN: 1-4244-0016-3; E-ISBN: 1-4244-0017-1; DOI:
12.
Watanabe
N.
,
Kondo
Y.
,
Ide
D.
,
Matsuki
T.
,
Takato
H.
,
Sakata
I.
(
2010
)
Characterization of polycrystalline silicon wafers for solar cells sliced with novel fixed-abrasive wire
.
Progress in Photovoltaics: Research and Applications
, Vol.
18
, No.
7
, pp.
485
490
. ISSN: 1062-7995; E-ISSN: 1099-159X; DOI:
13.
Solar Media Limited
(
2017
).
Product Review: Meyer Burgeŕs diamond wire cutting tool produces waders of 145 µm thickness
. Available online at: https://www.pv-tech.org/products/product-review-meyer-burgers-diamond-wire-cutting-tool-produces-wafers-of-1 [13.07.2017]
This content is only available via PDF.
You do not currently have access to this content.