Inverse thermal analyses of structural steel deep-penetration welds are presented. These analyses employ a methodology that is in terms of numerical-analytical basis functions and volumetric constraint conditions for inverse thermal analysis of steady state energy deposition in plate structures. These analyses provide parametric representations of weld temperature histories that can be adopted as input data to various types of computational procedures, such as those for prediction of solid-state phase transformations and mechanical response. In addition, these temperature histories can be used to construct parametric-function representations of thermal histories for welds corresponding to other process parameters or welding processes whose process conditions are within similar regimes. The present study applies an inverse thermal analysis procedure that uses volumetric constraint conditions whose two-dimensional projections are mappings onto transverse cross sections of experimentally measured solidification boundaries.

1.
D.
Rosenthal
, “
The theory of moving sources of heat and its application to metal treatments
,”
Trans ASME
, Vol.
68
(
1946
), pp.
849
866
.
2.
J.
Goldak
,
A.
Chakravarti
and
M.
Bibby
, “
A new finite element model for welding heat source
,”
Metall. Trans. B
, Vol.
15
, pp.
299
305
,
1984
.
3.
O.
Grong
, “Metallurgical Modelling of Welding,” 2ed.,
Materials Modelling Series
, (
H.K.D.H.
Bhadeshia
, ed.), published by
The Institute of Materials
,
UK
, (
1997
), chapter 2: pp.
1
115
.
4.
R.O.
Myhr
and
O.
Grong
,
’Acta Metall. Mater.
,
38
,
1990
, pp.
449
460
.
5.
R.C.
Reed
and
H.K.D.H
Bhadeshia
: “
A Simple Model For Multipass Welds
,”
Acta Metall. Mater.
1994
,
42
(
11
),
3663
3678
.
6.
V.A.
Karkhin
,
P.N.
Homich
and
V.G.
Michailov
, “Models for Volume Heat Sources and Functional-Analytic Technique for Calculating the Temperature Fields in Butt Welding”, ‘
Mathematical Modelling of Weld Phenomena
,’ Volume
8
,
847
, Published by
Verlag der Technischen Universite Graz
,
Austria
(
2007
).
7.
A.A.
Deshpande
,
A.
Short
,
W.
Sun
,
D.G.
McCartney
,
L.
Xu
and
T.H.
Hyde
, “
Finite-Element Analysis of Experimentally Identified Parametric Envelopes for Stable Kethole Plasma Arc Welding of a Titanium Alloy
,”
Journal of Strain Analysis for Engineering Design
,
47
(
5
), pp.
266
275
,
2012
.
8.
I.S.
Leoveanu
,
G.
Zgura
,
D.
Birsan
, “
Modeling the Heat and Fluid Flow in the Welded Pool
,”
Bulletin of the Transsilvania University of Brasov
, Vol.
3
, pp.
363
368
, ISSN 1223-9631,
2007
.
9.
I.S.
Leoveanu
and
G.
Zgura
, “
Modelling the Heat and Fluid Flow in the Welded Pool from High Power Arc Sources
,”
Materials Science Forum
, Editors:
C.
Lee
,
J-B.
Lee
,
D-H.
Park
,
S-J.
Na
, Vols.
580-582
, pp.
443
446
,
2008
.
10.
A.
Tarantola
, “Inverse Problem Theory and Methods for Model Parameter Estimation,”
SIAM
,
Philadelphia, PA
,
2005
.
11.
M.N.
Ozisik
and
H.R.B.
Orlande
: Inverse Heat Transfer,
Fundamentals and Applications
,
Taylor and Francis
,
New York
,
2000
.
12.
K.
Kurpisz
and
A.J.
Nowak
:
Inverse Thermal Problems
,
Computational Mechanics Publications
,
Boston, USA
,
1995
.
13.
O.M.
Alifanov
,
Inverse Heat Transfer Problems
.
Springer
,
Berlin
,
1994
.
14.
J.V.
Beck
,
B.
Blackwell
,
C.R.
St. Clair
,
Inverse Heat Conduction: Ill-Posed Problems
,
Wiley Interscience
,
New York
,
1985
.
15.
J.V.
Beck
, “Inverse Problems in Heat Transfer with Application to Solidification and Welding,”
Modeling of Casting, Welding and Advanced Solidification Processes V
,
M.
Rappaz
,
M.R.
Ozgu
and
K.W.
Mahin
eds.,
The Minerals, Metals and Materials Society
,
1991
, pp.
427
437
.
16.
J.V.
Beck
, “Inverse Problems in Heat Transfer,”
Mathematics of Heat Transfer
,
G.E.
Tupholme
and
A.S.
Wood
eds.,
Clarendon Press
, (
1998
), pp.
13
24
.
17.
S.G.
Lambrakos
and
J.G.
Michopoulos
,
Algorithms for Inverse Analysis of Heat Deposition Processes
, ‘Mathematical Modelling of Weld Phenomena,’ Volume
8
,
847
, Published by
Verlag der Technischen Universite Graz
,
Austria
(
2007
).
18.
S.G.
Lambrakos
and
J.O.
Milewski
, Analysis of Welding and Heat Deposition Processes using an Inverse-Problem Approach,
Mathematical Modelling of Weld Phenomena
,
7
,
1025
, Publishied by
Verlag der Technischen Universite Graz
,
Austria
2005
, pp.
1025
1055
.
19.
E.A.
Metzbower
,
D.W.
Moon
,
C.R.
Feng
,
S.G.
Lambrakos
and
R.J.
Wong
: “Modelling of HSLA-65 GMAW Welds,”
Mathematical Modelling of Weld Phenomena
,
7
, Publishied by
Verlag der Technischen Universite Graz
,
Austria
, pp.
327
339
(
2005
).
20.
H. S.
Carslaw
and
J. C.
Jaegar
:
Conduction of Heat in Solids
,
Clarendon Press
,
Oxford
, 2nd ed,
374
,
1959
.
21.
S.G.
Lambrakos
, “
Inverse Thermal Analysis of 304L Stainless Steel Laser Welds
,”
J. Mater. Eng. And Perform.
,
22
(
8
),
2141
(
2013
).
22.
J. K.
Kristensen
, “
Laser and Hybrid Laser-GMA Welding of Structural Steels, A Challenge to Research and Industry for Two Decades
,”
Trends in Welding Research, Proceedings of the 8th International Conference
, Editors:
S.A.
David
,
T.
DebRoy
,
J.N.
DuPont
,
T.
Koseki
,
H.B.
Smartt
,
ASM International
,
645
641
,
2009
.
This content is only available via PDF.
You do not currently have access to this content.