Aiming at a high performance lithium-ion battery, all process steps and materials have to be improved. Lithium metal is the most promising material for future anodes based on their high theoretical capacity of 3860 mAh/g and their low density of 0.534 g/cm3. Apart from the actual low cycle stability of those anodes, challenges lay in the separation and handling of lithium. Due to its toughness and adhesive properties, lithium metal anodes cannot be separated by conventional processes (e.g. punching), especially a constant and good cut quality is a significant challenge for large batch production. Remote laser cutting as a flexible and wear-free method for highly reproducible cutting is one promising option to cut lithium metal anodes within a significant quantity. The process has the potential to achieve higher quality than the conventional processes. Due to the good scalability and high automation, laser-based electrode cutting is a suitable process with expected high throughput speed. The influence of pulse repetition rate, cutting speed, pulse duration, power and atmospheric conditions on cutting edge quality were investigated considering melt superelevation, melt formation and contamination by chemical reactions with the atmosphere.

1.
Korthauer
,
R.
(
2013
)
Handbuch Lithium-Ionen-Batterien
,
Springer
Berlin Heidelberg
.
2.
Kreling
,
S.
(
2015
)
Laserstrahlung mit unterschiedlicher Wellenlänge zur Klebvorbereitung von CFK
. Dissertation or Thesis.
Technische Universität Braunschweig
.
3.
Lee
,
D.
,
Patwa
,
R.
,
Herfurth
,
H.
,
Mazumder
,
J.
(
2013
)
High speed remote laser cutting of electrodes for lithium-ion batteries. Anode (240)
. In
Journal of Power Sources
, pp.
368
380
.
4.
Luetke
,
M.
,
Franke
,
V.
,
Techel
,
A.
,
Himmer
,
T.
,
Klotzbach
,
U.
,
Wetzig
,
A.
et al. (2011 //
2014
)
A Comparative Study on Cutting Electrodes for Batteries with Lasers // Integrated cut and place module for high productive manufacturing of lithium-ion cells (12 // 63)
. In
Physics Procedia
(
1
), pp.
286
291
.
5.
Qian
,
J.
,
Henderson
,
W. A.
,
Xu
,
W.
,
Bhattacharya
,
P.
,
Engelhard
,
M.
,
Borodin
,
O.
,
Zhang
,
J.-G.
(
2015
)
High rate and stable cycling of lithium metal anode (6)
. In
Nature communications
, p.
6362
.
6.
Rahimze
,
E.
,
Sann
,
K.
,
Voge
,
M.
(
2015
)
Kompendium: Li-Ionen-Batterien. im BMWi Förderprogramm IKT für Elektromobilität II: Smart Car – Smart Grid – Smart Traffic Grundlagen, Bewertungskriterien, Gesetze und Normen
.
7.
Reincke
,
T.
,
Kreling
,
S.
,
Dilger
,
K.
(
2015
)
The influences of pulse overlap on cut quality during fiber laser cutting of electrodes for Lithium-ion batteries
.
In Lasers in Manufacturing Conference
.
8.
Thomas
Weber
, (
2016
)
Roadmap integrierte Zell- und Batterieproduktion Deutschland, Gemeinsame Geschäftsstelle Elektromobilitätder Bundesregierung (GGEMO)
.
9.
Wu
,
B.
,
Wang
,
S.
,
Evans
IV,
W. J.
,
Deng
,
D. Z.
,
Yang
,
J.
,
Xiao
,
J.
(
2016
)
Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems (4)
. In
J. Mater. Chem. A
(
40
), pp.
15266
15280
.
10.
Zhang
,
J.-G.
,
Xu
,
W.
,
Henderson
,
W. A.
(
2017
) Lithium Metal Anodes and Rechargeable Lithium Metal Batteries // Lithium metal anodes and rechargeable lithium metal batteries,
Springer
(
Springer series in materials science
, 0933-033X,
249
).
11.
Zhu
,
Y.
,
He
,
X.
,
Mo
,
Y.
(
2016
)
First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries (4)
.
In J. Mater. Chem. A
(
9
), pp.
3253
3266
.
This content is only available via PDF.
You do not currently have access to this content.