Laser cladding is an emerging tool for the repair of critical aerospace components, with damaged areas ground away and replaced with fresh material. Previous investigations for high strength steels have shown single layer repairs to produce overly hard clads comprised of untempered martensite, with further heat treatments required to produce acceptable mechanical properties. In this investigation, the microstructure and hardness of a multi-layer clad of 300M steel on 300M substrates were analysed to determine the viability of in-situ heat treatment via interlayer tempering. The top portion of the clad consisted of a very hard region of untempered martensite (∼640 HV) compared to the substrate (∼580 HV). This region extends to the AC3 isotherm achieved during cladding. The lower portion of the clad comprises of a much softer tempered region (∼490HV), and consists of tempered martensite with blocky austenite. In addition, islands of blocky reverted austenite form along solute enriched former cell boundaries. This region is found below the AC1 isotherm and begins just below the second highest clad layer. While this demonstrates the ability of multi-layer builds to produce a tempered microstructure the as-repaired state, further optimisation of the process parameters is needed to better match the hardness of clad and substrate.

1.
Tomita
,
Y.
(
2000
)
Development of fracture toughness of ultrahigh strength, medium carbon, low alloy steels for aerospace applications
,
International materials reviews
45
,
27
37
.
2.
Garrison
Jr,
W.
(
1990
)
Ultrahigh-strength steels for aerospace applications
,
JOM
42
,
20
24
.
3.
Campbell
Jr,
F.C.
(
2011
)
Manufacturing technology for aerospace structural materials
,
Elsevier
.
4.
Infante
,
V.
,
Reis
,
L.
,
de Freitas
,
M.
(
2014
)
Failure analysis of landing gears trunnions due to service
,
Engineering Failure Analysis
41
,
118
123
.
5.
Pistochini
,
T.
,
Hill
,
M.
(
2011
)
Effect of laser peening on fatigue performance in 300M steel
,
Fatigue & Fracture of Engineering Materials & Structures
34
,
521
533
.
6.
Hammersley
,
G.
,
Hackel
,
L.A.
,
Harris
,
F.
(
2000
)
Surface prestressing to improve fatigue strength of components by laser shot peening
,
Optics and Lasers in Engineering
34
,
327
337
.
7.
Liu
,
Q.
,
Janardhana
,
M.
,
Hinton
,
B.
,
Brandt
,
M.
,
Sharp
,
K
(
2011
)
Laser cladding as a potential repair technology for damaged aircraft components
,
International Journal of Structural Integrity
2
,
314
331
.
8.
Lourenço
,
J.M.
,
Da Sun
,
S.
,
Sharp
,
K.
,
Luzin
,
V.
,
Klein
,
A.N.
,
Wang
,
C.H.
,
Brandt
,
M.
(
2016
)
Fatigue and fracture behavior of laser clad repair of AerMet® 100 ultra-high strength steel
,
International Journal of Fatigue
85
,
18
30
.
9.
Walker
,
K.
,
Lourenço
,
J.
,
Sun
,
S.
,
Brandt
,
M.
,
Wang
,
C.
(
2017
)
Quantitative fractography and modelling of fatigue crack propagation in high strength AerMet® 100 steel repaired with a laser cladding process
,
International Journal of Fatigue
94
,
288
301
.
10.
Da Sun
,
S.
,
Liu
,
Q.
,
Brandt
,
M.
,
Luzin
,
V.
,
Cottam
,
R.
,
Janardhana
,
M.
,
Clark
,
G.
(
2014
)
Effect of laser clad repair on the fatigue behaviour of ultra-high strength AISI 4340 steel
,
Materials Science and Engineering: A
606
,
46
57
.
11.
Toyserkani
,
E.
,
Khajepour
,
A.
,
Corbin
,
S.F.
(
2004
)
Laser cladding
,
CRC press
.
12.
Kathuria
,
Y.
(
2000
)
Some aspects of laser surface cladding in the turbine industry
,
Surface and Coatings Technology
132
,
262
269
.
13.
Xu
,
G.
,
Kutsuna
,
M.
,
Liu
,
Z.
,
Yamada
,
K.
(
2006
)
Comparison between diode laser and TIG cladding of Co-based alloys on the SUS403 stainless steel
,
Surface and Coatings Technology
201
,
1138
1144
.
14.
Mazumder
,
J.
,
Choi
,
J.
,
Nagarathnam
,
K.
,
Koch
,
J.
,
Hetzner
,
D.
(
1997
)
The direct metal deposition of H13 tool steel for 3-D components
,
JOM
49
,
55
60
.
15.
Skiba
,
T.
,
Baufeld
,
B.
,
Van der Biest
,
O.
(
2011
)
Shaped metal deposition of 300M steel
,
Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture
225
,
831
839
.
16.
Baufeld
,
B.
,
Van der Biest
,
O.
,
Gault
,
R.
(
2010
)
Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: microstructure and mechanical properties
,
Materials & Design
31
,
106
111
.
17.
Krakhmalev
,
P.
,
Yadroitsava
,
I.
,
Fredriksson
,
G.
,
Yadroitsev
,
I.
(
2015
)
In situ heat treatment in selective laser melted martensitic AISI 420 stainless steels
,
Materials & Design
87
,
380
385
.
18.
Steen
,
W.M.
Laser surface treatment,
Laser Material Processing
,
Springer
,
1991
,
172
219pp
19.
Gadag
,
S.
,
Srinivasan
,
M.
,
Mordike
,
B.
(
1995
)
Effect of laser processing parameters on the structure of ductile iron
,
Materials Science and Engineering: A
196
,
145
154
.
20.
Cai
,
X.-L.
,
Garratt-Reed
,
A.
,
Owen
,
W.
(
1985
)
The development of some dual-phase steel structures from different starting microstructures
,
Metallurgical and Materials Transactions A
16
,
543
557
.
21.
Kim
,
K.
,
Schwartz
,
L.
(
1978
)
On the effects of intercritical tempering on the impact energy of Fe – 9Ni–0.1C
,
Materials Science and Engineering
33
5
20
.
22.
Güral
,
A.
,
Bostan
,
B.
,
Özdemir
,
A.
, (
2007
)
Heat treatment in two phase region and its effect on microstructure and mechanical strength after welding of a low carbon steel
,
Materials & Design
28
,
897
903
.
23.
Yuan
,
L.
,
Ponge
,
D.
,
Wittig
,
J.
,
Choi
,
P.
,
Jiménez
,
J.
,
Raabe
,
D.
, (
2012
)
Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: Example of a ductile 2GPa Fe–Cr–C steel
,
Acta Materialia
60
,
2790
2804
.
24.
Springer
,
H.
Belde
,
M.
,
Raabe
,
D.
(
2013
)
Bulk combinatorial design of ductile martensitic stainless steels through confined martensite-to-austenite reversion
,
Materials Science and Engineering: A
582
,
235
244
.
25.
Kaluba
,
W.
,
Taillard
,
R.
,
Foct
,
J.
(
1998
)
The bainitic mechanism of austenite formation during rapid heating
,
Acta Materialia
46
,
5917
5927
.
26.
Kürnsteiner
,
P.
,
Wilms
,
M.B.
,
Weisheit
,
A.
,
Barriobero-Vila
,
P.
,
Jägle
,
E.A.
,
Raabe
,
D.
(
2017
)
Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition
,
Acta Materialia
129
,
52
60
.
27.
Speich
,
G.
,
Leslie
,
W.
(
1972
)
Tempering of steel
,
Metallurgical and Materials Transactions B
3
,
1043
1054
.
28.
Yang
,
H.-S.
,
Bhadeshia
,
H.
(
2009
)
Austenite grain size and the martensite-start temperature
,
Scripta Materialia
60
,
493
495
.
29.
Colaco
,
R.
,
Vilar
,
R.
(
1997
)
Effect of laser surface melting on the tempering behaviour of DIN X42Cr13 stainless tool steel
,
Scripta Materialia
,
107
113
.
30.
Zhang
,
K.
,
Wang
,
S.
,
Liu
,
W.
,
Shang
,
X.
(
2014
)
Characterization of stainless steel parts by laser metal deposition shaping
,
Materials & Design
55
,
104
119
.
31.
Colaco
,
R.
,
Vilar
,
R.
(
1998
)
Effect of the processing parameters on the proportion of retained austenite in laser surface melted tool steels
,
Journal of Materials Science Letters
17
,
563
567
.
This content is only available via PDF.
You do not currently have access to this content.