Based on their inherent features and various light- material interactions, the lasers empower tremendous opportunities in advancing mass spectrometry (MS) and significantly expanded its application scopes. By utilizing laser ablation, sampling and ionizing hard materials in open air are made possible. However, due to rapid ion dissociation and low ionization efficiency in open air, corresponding detection limit and sensitivity are far from satisfactory. In this study, an integrated MS analytic technique is reported combining femto-second (fs) laser ablation and magnetic-field confinement to improve plasma ionization efficiency, confine plasma propagation, and promote ion collection efficiency. As the results, signal-to-noises (SNRs) of trace elements, such as Al, Si and Pb, in standard NIST samples are obviously improved. The direction of the external magnetic field demonstrates apparent influence in the SNR improvements with the best results obtained when the magnetic field drives the ions towards the MS orifice. The enhancement factors (EFs) of 8.30, 8.22 and 8.50 are achieved in detecting Pb isotopes of 206Pb, 207Pb, and 208Pb, respectively. The limits of detections (LODs) were reduced from 9.75, 32.9, and 8.19 ppm to 2.32, 6.02, and 1.98 ppm, respectively for 206Pb, 207Pb, and 208Pb.

1.
D. A.
Rusak
,
B. C.
Castle
,
B. W.
Smith
,
J. D.
Winefordner
, “
Recent trends and the future of laser induced plasma spectroscopy
,”
Trends Anal. Chem.
17
(
8-9
),
453
461
(
1998
).
2.
N.
Omenetto
, “
Role of lasers in analytical atomic spectroscopy: where, when and why
,”
J. Anal. At. Spectrom.
13
(
5
),
385
399
(
1998
).
3.
X. N.
He
, “
Mass spectrometry of solid samples in open air using combined laser ionization and ambient metastable ionization
,”
Spectrochimica Acta Part B
67
,
64
73
(
2012
).
4.
R. E.
Russo
,
X. L.
Mao
,
H. C.
Liu
,
J.
Gonzalez
,
S. S.
Mao
, “
Laser ablation in analytical chemistry — a review
,”
Talanta
57
(
3
),
425
451
(
2002
).
5.
A.
Vertes
,
R.
Gijbels
,
F.
Adams
, Laser Ionization Mass Analysis,
Wiley Interscience
, (
New York
,
1993
).
6.
J.
He
,
W.
Zhong
,
C.
Mahan
,
W.
Hang
, “
Laser ablation and ionization time-of-flight mass spectrometer with orthogonal sample introduction and axial field rf-only quadrupole cooling
,”
Spectrochim. Acta Part B
61
(
2
),
220
224
(
2006
).
7.
W.
Hang
, “
Laser ionization time-of-flight mass spectrometer with an ion guide collision cell for elemental analysis of solids
,”
J. Anal. At. Spectrom.
20
(
4
),
301
307
(
2005
).
8.
D.
Peng
,
J.
He
,
Q.
Yu
,
L.
Chen
,
W.
Hang
,
B.
Huang
, “
Parametric evaluation of laser ablation and ionization time-of-flight mass spectrometry with ion guide cooling cell
,”
Spectrochim. Acta Part B
63
(
8
),
868
874
(
2008
).
9.
A. A.
Sysoev
,
A. A.
Sysoev
, “
Can laser-ionisation time-of-flight mass spectrometry be a promising alternative to laser ablation/inductively-coupled plasma mass spectrometry and glow discharge mass spectrometry for the elemental analysis of solids?
Eur. J. Mass Spectrom.
8
(
3
),
213
232
(
2002
).
10.
J. S.
Becker
,
H. J.
Dietze
, “
Laser ionization mass spectrometry in inorganic trace analysis
,”
Fresenius J. Anal. Chem.
344
(
3
),
69
86
(
1992
).
11.
J.
He
,
R.
Huang
,
Q.
Yu
,
Y.
Lin
,
W.
Hang
,
B.
Huang
, “
A small high-irradiance laser ionization time-of-flight mass spectrometer
,”
J. Mass Spectrom.
44
(
5
),
780
785
, (
2009
).
12.
T.
Kato
,
T.
Kobayashi
,
Y
,
Hayashizaki
, et al, “
Comparison between femtosecond and nanosecond laser ablation of solution samples applied on a substrate
,”
Journal of Physics: Conference Series
59
,
372
375
(
2007
).
13.
V.
Margetic
,
A.
Pakulev
,
A.
Stockhaus
,
M.
Bolshov
,
K.
Niemax
, et al, “
A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples
,”
Spectrochimica Acta Part B
55
,
1771
1785
(
2000
).
14.
I.
Saxena
,
S.
Wolff
, and
J.
Cao
, “
Unidirectional magnetic field assisted laser induced plasma micromachining
,”
Manufacturing Letters
3
,
1
4
(
2015
).
15.
D. M.
Hoffman
,
B.
Singh
, and
J. H.
Thomas
, Handbook of vacuum science and technology, (
Elsevier Inc.
,
1998
).
16.
K. A.
Pathak
and
A. J.
Chandy
, “
Laser ablated carbon plume flow dynamics under magnetic field
,”
J. Appl. Phys.
105
(
8
),
084909
(
2009
).
17.
E. H.
Holt
and
R. E.
Haskell
, Foundations of plasma dynamics, (
New York
,
1965
).
18.
H. J.
Dang
,
Y. X.
Tang
, and
Q. Z.
Qin
, “
Mass and velocity distribution of laser ablated species ejected from a colossal magnetoresistant Pr0.67Sr0.33MnO3 target
,”
Applied Surface Science
136
(
3
),
206
212
(
1998
).
19.
L. V.
Zhigilei
and
B. J.
Garrison
, “
Velocity distributions of molecules ejected in laser ablation
,”
Appl. Phys. Lett.
71
(
4
),
551
553
(
1997
).
20.
X. K.
Shen
,
H.
Wang
,
Z. Q.
Xie
,
Y.
Gao
,
H.
Ling
,
Y. F.
Lu
, “
Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence
,”
Appl. Opt.
48
(
13
),
2551
2558
, (
2009
).
21.
X. K.
Shen
,
Y.F.
Lu
,
T.
Gebre
,
H.
Ling
, and
Y. X.
Han
, “
Optical emission in magnetically confined laser-induced breakdown spectroscopy
,”
J. Appl. Phys.
100
(
5
),
053303
(
2006
).
22.
W.
Wang
,
J.
Foster
,
A. E.
Wndt
,
J. H.
Booske
,
T.
Onuoha
,
P. W.
Sandstrom
,
H.
Liu
,
S. S.
Gearhart
, and
N.
Hershkowitz
, “
Magnetic-field-enhanced rf argon plasma for ionized sputtering of copper
,”
Appl. Phys. Lett.
71
(
12
),
1622
1624
(
1997
).
23.
K. G.
Kostov
and
J. J.
Barroso
, “
Numerical simulation of magnetic-field-enhanced plasma immersion ion implantation in cylindrical geometry
,”
IEEE Transactions on plasma science
34
(
4
),
1127
1135
(
2006
).
This content is only available via PDF.
You do not currently have access to this content.