Over the past decade, the field of optical manipulation has been “shaped” by intelligent design of nonconventional optical beams. In particular, optical beams carrying angular momentum have provided a new twist to optical tweezers, enabling dynamical spin and rotation of trapped particles. Although optical vortex beams, nondiffracting Bessel beams, and recently, self-accelerating Airy beams have each played a unique role in the arena of particle trapping and manipulation, combining their features would certainly lead to a more powerful tool.

A few years ago, we designed and demonstrated diffraction-resisting Bessel-like beams that travel along arbitrary trajectories. With the similar method, the singular beam was shaped in this paper, which owns the form of a higher-order Bessel function with a preserving OAM and a nonexpanding dark “hole” in the main lobe of the beam. The beam can propagate along an arbitrary trajectory, including parabolic, hyperbolic and even three-dimensional (3D) spiraling trajectories. Experimentally, not only we observe such a curved singular beam, but also we employ it to optically trap and rotate microparticles in a 3D spiral motion under the combined action of radiation pressure, gradient force, and the OAM. Our findings may open up new avenues for shaped light in various applications.

1.
L.
Allen
,
M. W.
Beijersbergen
,
R. J. C.
Spreeuw
, and
J. P.
Woerdman
. (
1992
)
Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes
,
Phys. Rev. A.
45
,
8185
.
2.
A. M.
Yao
and
M. J.
Padgett
. (
2011
)
Orbital angular momentum: origins, behavior and applications
,
Adv. Opt. Photon.
3
,
161
.
3.
J.
Durnin
,
J. J.
Miceli
, Jr.
, and
J. H.
Eberly
. (
1987
)
Diffraction-free beams
,
Phys. Rev. Lett.
58
,
1499
.
4.
C.
Paterson
and
R.
Smith
. (
1996
)
Higher-order Bessel waves produced by axicon-type computer-generated holograms
,
Opt. Commun.
124
,
121
.
5.
K. V.
Sepulveda
,
V. G.
Chávez
,
S. C.
Cerda
,
J.
Arlt
and
K.
Dholakia
. (
2002
)
Orbital angular momentum of a high-order Bessel light beam
,
J. Opt. B: Quantum Semiclass. Opt.
4
,
S82
.
6.
G. A.
Siviloglou
and
D. N.
Christodoulides
. (
2007
)
Accelerating finite energy Airy beams
,
Opt. Lett.
32
,
979
.
7.
G. A.
Siviloglou
,
J.
Broky
,
A.
Dogariu
and
D. N.
Christodoulides
. (
2007
)
Observation of accelerating Airy Beams
,
Phys. Rev. Lett.
99
,
213901
.
8.
Y.
Hu
,
G. A.
Siviloglou
,
P.
Zhang
,
D. N.
Christodoulides
, and
Z.
Chen
. (
2012
) Self-accelerating Airy beams: generation, control, and applications in
Z.
Chen
and
R.
Morandotti
eds. in
Nonlinear Photonics and Novel Phenomena, Springer
,
1
47
.
9.
H. T.
Dai
,
Y. J.
Liu
,
D.
Luo
, and
X. W.
Sun
. (
2010
)
Propagation dynamics of an optical vortex imposed on an Airy beam
,
Opt. Lett.
35
,
4075
;
10.
H. T.
Dai
,
Y. J.
Liu
,
D.
Luo
, and
X. W.
Sun
. (
2011
)
Propagation properties of an optical vortex carried by an Airy beam: experimental implementation
,
Opt. Lett.
36
,
1617
;
11.
X.
Chu
. (
2012
)
Propagation of an Airy beam with a spiral phase
,
Opt. Lett.
37
,
5202
.
12.
I. D.
Chremmos
,
Z.
Chen
,
D. N.
Christodoulides
,
N. K.
Efremidis
. (
2012
)
Bessel-like optical beams with arbitrary trajectories
,
Opt. Lett.
37
,
5003
.
13.
J.
Zhao
,
P.
Zhang
,
D.
Deng
,
J.
Liu
,
Y.
Gao
,
I. D.
Chremmos
,
N. K.
Efremidis
,
D. N.
Christodoulides
, and
Z.
Chen
. (
2013
)
Observation of self-accelerating Bessel-like optical beams along arbitrary trajectories
,
Opt. Lett.
38
,
498
.
14.
J.
Zhao
,
I. D.
Chremmos
,
D.
Song
,
D. N.
Christodoulides
,
N. K.
Efremidis
, and
Z.
Chen
. (
2015
)
Curved singular beams for three-dimensional particle manipulation
,”
Sci. Rep.
5
,
12086
.
15.
P.
Zhang
,
J.
Prakash
,
Z.
Zhang
,
M. S.
Mills
,
N.
Efremidis
,
D.
Christodoulides
and
Z.
Chen
(
2011
)
Trapping and guiding microparticles with morphing autofocusing Airy beams
Opt. Lett.
36
2883
2885
.
16.
P.
Zhang
,
D.
Hernandez
,
D.
Cannan
,
Y.
Hu
,
S.
Fardad
,
S.
Huang
,
J. C.
Chen
,
D. N.
Christodoulides
and
Z.
Chen
(
2012
)
Trapping and rotating microparticles and bacteria with moiré-based optical propelling beams Biomed
.
Opt. Exp.
3
1891
1897
.
17.
I.
Dolev
,
R.
Bekenstein
,
J.
Nemirovsky
, and
M.
Segev
. (
2012
)
Nondiffracting accelerating wave packets of Maxwell’s equations
,
Phys. Rev. Lett.
108
,
163901
.
18.
P.
Zhang
,
Y.
Hu
,
D.
Cannan
,
A.
Salandrino
,
T.
Li
,
R.
Morandotti
,
X.
Zhang
, and
Z.
Chen
. (
2012
)
Generation of linear and nonlinear nonparaxial accelerating beams
,
Opt. Lett.
37
,
2820
.
19.
P.
Zhang
,
Y.
Hu
,
T.
Li
,
D.
Cannan
,
X.
Yin
,
R.
Morandotti
,
Z.
Chen
, and
X.
Zhang
. (
2012
)
Nonparaxial Mathieu and Weber accelerating beams
,
Phys. Rev. Lett.
109
,
193901
.
20.
F.
Courvoisier
,
A.
Mathis
,
L.
Froehly
,
R.
Giust
,
L.
Furfaro
,
P. A.
Lacourt
,
M.
Jacquot
, and
J. M.
Dudley
. (
2012
)
Sending femtosecond pulses in circles: highly nonparaxial accelerating beams
,
Opt. Lett.
37
,
1736
.
21.
P.
Aleahmad
,
M.-A.
Miri
,
M. S.
Mills
,
I.
Kaminer
,
M.
Segev
, and
D. N.
Christodoulides
. (
2012
)
Fully vectorial accelerating diffraction- free Helmholtz beams
,
Phys. Rev. Lett.
109
,
203902
.
This content is only available via PDF.
You do not currently have access to this content.