The study investigated cutting of glass by non-laser ablation technique through non-linear absorption laser pulses induced optical breakdown, melting and plasma expansion throughout the glass thickness from bottom to top. Picosecond near-infrared laser pulses were used. The laser beam was focused with an objective lens with numerical aperture (NA) of 0.1. The study revealed that focus position is a key factor in determining glass well-separation. When the laser focus was placed at 500 µm below the top surface for a 700 µm thick ion exchanged Gorilla glass, namely more than half of the glass thickness, the glass could be well-separated into two pieces. At focus near the top surface, V-shaped ablation grooves were generated at the glass top surface without glass separation. At focus inside the glass and near to the bottom surface, internal scribing occurred at the bottom part of the glass. The glass could also be separated by scribing-caused cracking throughout the glass entire thickness. At the optimal focus ranges, well-separation of the glass was found to be at speeds of 0.5-6 mm/s and pulse frequency around 200 KHz with laser laser fuence of 0.87 J/cm2. At low pulse frequencies such as below 100 KHz, glass top surface was ablated without glass separation. At higher pulse frequencies above 300 KHz, cracks were produced and the glass was separated into multiple pieces. Interestingly, at pulse frequency upto 500 KHz, both top surface ablation and bottom surface ablation occurred. Eventually, the glass was cracked into multiple pieces. Different pulse frequency produces different pulse energy. For example, 200 KHz generates a laser fluence of 0.87 J/cm2 at the glass top surface, 100 KHz for 1.59 J/cm2 and 300 KHz for 0.60 J/cm2 etc. Furthermore, the glass was cracked at the high speeds above 10 mm/s. The results indicate that there is an optimal time-dependent energy deposition, namely, laser energy deposition rate for glass well-separation. The calculation shows that the energy deposition rates were between 1.29×104 µJ/μm3s to 1.54×105 µJ/μm3s.

1.
Udrea
,
M.
(
2000
)
Small power pulsed and continuous longitudinal CO2 Laser for material processing
,
Proc. SPIE
4068
,
657
662
2.
Yamamoto
,
K.
,
Hasaka
,
N.
,
Morita
,
H.
,
Ohmura
,
E.
, (
2010
)
Influence of thermal expansion coefficient in laser scribing of glass
,
Precision Engineering
34
,
70
75
3.
Hermanns
,
C.
(
2000
)
Laser cutting of glass
,
Proc. of SPIE
4102
,
219
226
4.
Hermanns
,
C.
,
Middleton
,
J.
, (
2005
)
Laser separation of flat glass in electronic-, optic-, display- and bio-industry
,
Proc. of SPIE
5713
,
387
396
5.
Wang
,
Y.-Z.
,
Lin
,
J.
, (
2007
)
Characterization of the laser cleaving on glass sheets with a line-shape laser beam
,
Optics & Laser Technology
39
,
892
899
6.
Du
,
K.
,
Shi
,
P.
(
2003
)
Subsurface precision machining of glass substrates by innovative lasers
,
Glass Sci. Technology
76
,
95
98
7.
Nikumba
,
S.
,
Chena
,
Q.
,
Lia
,
C.
,
Reshefa
,
H.
,
Zheng
,
H.Y.
,
Qiu
H.
,
Low
,
D.
(
2005
)
Precision glass machining, drilling and profile cutting by short pulse lasers
,
Thin Solid Films
477
,
216
221
8.
Abramova
,
A.A.
,
Matthew
,
L.
,
Blacka
,
G.S.
,
Glaesemanna
(
2010
)
Laser separation of chemically strengthened glass
,
Physics Procedia
5
,
285
290
9.
Russ
,
S.
,
Siebert
,
C.
,
Eppelt
,
U.
,
Hartmann
,
C.
,
Faißt
,
B.
,
Schulz
,
W.
(
2013
)
Picosecond laser ablation of transparent materials
,
Proc. of SPIE
8608
,
86080E-1
11
10.
Moorhouse
,
C.
(
2013
)
Advantages of picosecond laser machining for cutting-edge technologies
,
Physics Procedia
41
,
381
388
11.
Chen
,
J.
,
Wu
,
Z.
(
2013
)
Laser cutting of ultra-thin glasses based on a nonlinear laser interaction effect
,
Proc. of SPIE 8786
,
87860E-1
6
12.
Haupt
,
O.
,
Müller
,
D.
,
Gäbler
,
F.
(
2013
)
Shorter Pulse Widths Improve Micromachining
,
EuroPhotonics
18
,
28
30
13.
Matylitsky
,
V.V.
,
Hendricks
,
F.
,
Aus
der Au
, J. (
2013
)
Femtosecond Laser Ablation Properties of Transparent Materials: Impact of the laser process parameters on the machining throughput
,
Proc. of SPIE
Vol.
8611
861112-1
8
14.
Rekow
,
M.
,
Zhou
,
Y.
,
Falletto
,
N.
(
2014
)
Precision glass processing with picosecond laser pulses
,
Industrial Laser Solutions Mar/Apr.
,
11
14
15.
M.
Kumkara
,
L.
Bauerb
,
S.
Russb
,
M.
Wendela
,
J.
Kleinera
,
D.
Grossmanna
,
K.
Bergnerc
,
S.
Noltec
(
2014
)
Comparison of different processes for separation of glass and crystals using ultra short pulsed lasers
,
Proc. of SPIE
Vol.
8972
897214-1
16
16.
Wang
,
Z.K.
,
Zheng
,
H.Y.
,
Seow
,
W.L.
,
Wang
,
X.C.
(
2015
)
Investigation on material removal efficiency in debris-free laser ablation of brittle substrates
,
Journal of Materials Processing Technology
219
,
133
142
17.
Herman
P.R.
,
Abbas
Hosseini
, S.
Method of material processing by laser filamentation
. Patent No. PCT/CA2011/050427; WO/2012/006736 (19 January
2012
).
18.
Kogl
,
B.
(
2014
)
Rofin’s new SmartCleave™ FI technology. Paper presented at Laser Technology Seminar
. Available from: http://www.trigonmicro.com/wp-content/uploads/Rofin_SmartCleave_FI_Processing.pdf
19.
Butkus
,
S.
,
Paipulas
,
D.
,
Sirutkaitis
,
R.
,
Sirutkaitis
,
V.
, (
2014
)
Rapid cutting and drilling of transparent materials via femtosecond laser filamentation
,
Journal of Laser Micro/Nanoengineering
9
,
213
220
20.
Watanabe
,
W.
,
Tamaki
,
T.
,
Ozeki
,
Y.
,
Itoh
,
K.
(
2010
) Filamentation in Ultrafast Laser Material Processing in book “Progress in Ultrafast Intense Laser Science VI”, Editors:
Yamanouchi
,
K.
,
Gerber
.
G.
,
Bandrauk
,
A.D.
, Vol.
99
of the series
Springer Series in Chemical Physics
pp
161
181
21.
Miyamoto
,
I.
,
Cvecek
,
K.
,
Schmidt
M.
(
2011
)
Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses
,
Opt. Express
19
,
10714
10727
22.
Sun
,
M.
,
Urs
Eppelt
,
Schulz
,
W.
,
Zhu
,
J.
, (
2013
)
Role of thermal ionization in internal modification of bulk borosilicate glass with picosecond laser pulses at high repetition rates
,
Optical Materials Express
3
,
1716
1726
23.
Chin
,
S.L.
, (
2010
)
Femtosecond Laser Filamentation, Springer Series On Atomic
,
Optical And Plasma Physics
, pp.
6
8
24.
Koubassov
,
V.
,
Laprise
,
J.F.
,
Théberge
,
F.
,
Förster
,
E.
,
Sauerbrey
,
R.
,
Müller
,
B.
,
Glatzel
,
U.
,
Chin
,
S.L.
, (
2004
)
Ultrafast laser-induced melting of glass
,
Applied Physics A
79
,
499
505
25.
Kaschke
,
M.
,
Donnerhacke
,
K.H.
,
Rill
,
M.S.
, Optical Devices in Ophthalmology and Optometry: Technology,
Design Principles and Clinical Applications
,
2013
,
John Wiley & Sons, Germany
, pp
375
392
26.
Karlsson
,
S.
,
Jonson
,
B.
,
Stålhandske
,
C.
(
2010
)
The technology of chemical glass strengthening- a review
,
European Journal of Glass Science and Technology A
51
,
41
54
27.
Steen
,
W.
,
Watkins
,
K.G.
,
Mazumder
,
J.
, Laser Material Processing,
2010
, 4thed,
Springer Science & Business Media
,
London
, p.
91
28.
Machado
,
L.M.
,
Samad
,
R.E.
,
Rossi
,
W.
,
Junior
,
N.D.V.
(
2012
)
D-Scan measurement of ablation threshold incubation effects for ultrashort laser pulses
,
Optics Express
20
,
4114
4123
29.
Schaffer
,
C.B.
, (
2001
)
Interaction of femtosecond laser pulses with transparent materials
,
2001
, Ph.D Thesis,
Harvard University, Massachusetts
30.
Reisinger
,
T.
,
Braccoand
,
G.
,
Holst
,
B.
, (
2011
)
Particle–wave discrimination in Poisson spot experiments
,
New Journal of Physics
13
,
0065016
31.
Eaton
,
S.M.
,
Cerullo
,
G.
,
Osellame
,
R.
, (
2012
) Fundamentals of Femtosecond Laser Modification of Bulk Dielectrics, Femtosecond Laser Micromachining, vol.
123
,
2012
, complied by
Roberto
Osellame
,
Giulio
Cerullo
,
Roberta
Ramponi
,
Topics in Applied Physics
,
London
, pp
3
18
32.
Sun
,
M.Y.
,
Eppelt
,
U.
,
Schulz
,
W.G.
,
Zhu
,
J.Q
, (
2013
)
Role of thermal ionization in internal modification of bulk borosilicate glass with picosecond laser pulses at high repetition rates
,
Optical Materials Express
3
,
1716
1726
.
This content is only available via PDF.
You do not currently have access to this content.