Commercially pure titanium (cp-Ti) and titanium alloys are successful metallic biomaterials for implants because of their biocompatibility, corrosion resistance, fatigue strength, and a relatively low elastic modulus to minimize “stress shielding” and osteopenia. Nowadays, titanium components are manufactured by conventional subtractive methods, which show a set of inconveniences: titanium has low machinability, loss of high cost material during machining, and the geometrical limitation for the shapes achieved by subtractive methods. Rapid Prototyping based on Laser Cladding is an Additive Manufacturing (AM) technique that can be applied to any material which can be melted. It can be found under different names and acronyms: Laser Consolidation (LC), Direct Laser Deposition (DLD), Laser Metal Deposition (LMD), Laser Engineering Net Shaping (LENS), etc. Rapid Prototyping based on Laser Cladding can become a solution to manufacture advanced pure titanium components customized for the final user, with new geometries and/or with enhanced microstructures and mechanical properties for a better performance. In this research work, Laser Additive Manufacturing was employed to obtain simple parts made out of commercially pure titanium. Generated parts were analyzed by Optical Microscopy (OM), Optical Profilometry (OP), Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray Spectroscopy (EDS) to study morphology, microstructure, and composition.

1.
Leyens
,
C.
,
Manfred
,
P.
(
2003
) Titanium and Titanium Alloys: Fundamentals and Applications,
Wiley-VCH Verlag
,
513
pp.
2.
Donachie
,
M.J.
(
2000
) Titanium-A Technical Guide,
ASM International
,
381
pp.
3.
Oshida
,
Y.
(
2007
) Bioscience and Bioengineering of Titanium Materials,
Elsevier Science
,
448
pp.
4.
Geetha
,
M.
,
Singh
,
A.K.
,
Asokamani
,
R.
,
Gogia
,
A.K.
(
2009
)
Ti based biomaterials, the ultimate choice for orthopaedic implants – A review
,
Progress in Materials Science
,
54
,
397
425
.
5.
Ezugwu
,
E.O.
,
Wang
,
Z.M.
(
1997
)
Titanium alloys and their machinability - a review
,
Journal of Materials Processing Technology
,
68
,
262
274
.
6.
Toyserkani
,
E.
,
Khajepour
,
A.
,
Corbin
,
S.
(
2004
) Laser Cladding,
CRC Press LLC
,
280
pp.
7.
Lusquiños
,
F.
,
Comesaña
,
R.
,
Riveiro
,
A.
,
Quintero
,
F.
,
Pou
J.
(
2009
)
Fibre laser micro-cladding of Co-based alloys on stainless steel
,
Surface & Coatings Technology
,
208
,
1933
1940
.
8.
Xue
,
L.
,
Chen
,
J.
, (
2010
)
Process-induced microstructural characteristics of laser consolidated IN-738 superalloy
,
Materials Science and Engineerig A
,
527
,
7318
7328
.
9.
Clark
,
D.
,
Whittaker
,
M.
,
Bache
,
M. R.
(
2011
)
Microstructural Characterization of a Prototype Titanium Alloy Structure Processed via Direct Laser Deposition (DLD)
,
Metallurgical and Materials Transactions B
,
43B
,
388
396
.
10.
Naveed
Ahsan
, M.,
Paul
,
C.P.
,
Kukreja
,
L.M.
,
Pinerton
,
A.J.
(
2011
)
Porous structures fabrication by continuous and pulsed laser metal deposition for biomedical applications; modelling and experimental investigation
,
Journal of Materials Processing Technology
,
211
,
602
609
.
11.
Wang
,
L.
,
Felicelli
,
S.D.
,
Craig
,
J.E.
(
2009
)
Experimental and Numerical Study of the LENS Rapid Fabrication Process
,
Journal of Manufacturing Science and Engineering
,
131
, 041019,
1
8
.
12.
Costa
,
L.
,
Vilar
,
R.
(
2009
)
Laser powder deposition
,
Rapid Prototyping Journal
,
15
(
4
),
264
279
.
13.
Dinda
,
G.P.
,
Dasgupta
,
A.K.
,
Mazumder
,
J.
(
2009
)
Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and termal stability
.
Materials Science and Engineering A
,
5009
,
98
104
.
14.
España
,
F.A.
,
Krishna
Balla
, V.,
Bose
,
S.
,
Bandyopadhyay
,
A.
(
2010
)
Design and fabrication of CoCrMo alloy based novel structures for load bearing implants using laser engineered net shaping
,
Materials Science and Enginering C
,
30
,
50
57
.
15.
Comesaña
,
R.
,
Lusquiños
,
F.
,
del Val
,
J.
,
López-Álvarez
,
M.
,
Quintero
,
F.
,
Riveiro
,
A.
,
Boutinguiza
,
M.
,
de Carlos
,
A.
,
Jones
,
J.R.
,
Hill
,
R.G.
,
Pou
,
J.
(
2011
)
Three-dimensional bioactive glass implants fabricated by rapid prototyping based on CO2 laser cladding
,
Acta Biomaterialia
,
7
,
3476
3487
.
16.
Comesaña
,
R.
,
Lusquiños
,
F.
,
del Val
,
J.
,
Malot
,
T.
,
López-Álvarez
,
M.
,
Riveiro
,
A.
,
Quintero
,
F.
,
Boutinguiza
,
M.
,
Aubry
,
P.
,
de Carlos
,
A.
,
Pou
,
J.
(
2011
)
Calcium phosphate grafts produced by rapid prototyping based on laser cladding
,
Journal of the European Ceramic Society
,
31
,
29
41
.
17.
Dutta
,
B.
,
Froes
,
F.H.
(
2014
)
Additive Manufacturing of Titanium Alloys
,
Advanced Materials and Processes
,
172
(
2
),
18
23
.
18.
Kobryn
,
P.A.
,
Moore
,
E.H.
,
Semiatin
,
S.L.
(
2000
)
The effect of laser power and traverse speed on microstructure, porosity, and build height in laser-deposited Ti-6Al-4V
,
Scripta Materialia
,
43
,
299
305
.
19.
Dinda
,
G.P.
,
Song
,
L.
,
Mazumder
,
J.
(
2008
)
Fabrication of Ti-6Al-4V Scaffolds by Direct Metal Deposition
,
Metallurgical and Materials Transactions A
,
39
(
12
),
2914
2922
.
20.
Gharbi
,
M.
,
Peyre
,
P.
,
Gorny
,
C.
,
Carin
,
M.
,
Morville
,
S.
,
Le Masson
,
P.
,
Carron
,
D.
,
Fabbro
,
R.
(
2014
)
Influence of a pulsed laser regime on surface finish induced by the direct metal deposition process on a Ti64 alloy
,
Journal of Materials Processing Technology
,
2014
(
2
),
485
495
.
21.
Meacock
,
C.
,
Vilar
,
R.
(
2008
)
Laser powder microdeposition of CP2 Titanium
,
Materials & Design
,
29
,
353
361
.
This content is only available via PDF.
You do not currently have access to this content.