Due to the outstanding electrical properties of graphene, the demand of its clean and well-defined micro-structures for diverse applications has increased. However, fabrication of such micro-structured graphene is difficult due to handling and machining problems. Femtosecond lasers are versatile tools for controlled ablation and resulting patterning process. In this paper, we present the selective ablation and functionalization of monolayers of graphene on 300 nm thick thermally grown silicon dioxide on silicon substrates with a Ti:sapphire laser (λ = 800 nm, τ = 40 fs). Investigations were performed on the micro- patterns in graphene ablated by the laser in the fluence range of 0.9-2.2 J/cm2. Just below the ablation threshold functionalization of the graphene layer was obtained. The resolution of the patterning was in the range of a few micrometers. In order to study the effect of oxidation of graphene at the ablation rim, the experiments were conducted both under ambient and inert gas atmosphere conditions. The morphology of the irradiated region of graphene was evaluated with optical microscopy, scanning electron microscopy and atomic force microscopy. With Raman spectroscopy the complete removal of graphene was ascertained. Finally, we find that femtosecond laser ablation is a promising method for direct writing of micro-patterns in graphene monolayers for various potential applications, e.g. for electrodes of thin film transistors.

1.
Novoselov
,
K.S.
,
Geim
,
A.K.
,
Morozov
,
S.V.
,
Jiang
,
D.
,
Katsnelson
,
M. I.
,
Grigorieva
,
I. V.
,
Dubonos
,
S. V.
&
Firsov
,
A. A.
(
2005
)
Two-dimensional gas of massless Dirac fermions in graphene
.
Nature
438
,
197
200
.
2.
Geim
A.K.
&
Novoselov
K.S.
(
2007
)
The rise of graphene
.
Nat Mater
6
,
183
191
.
3.
Ferrari
,
A.C.
,
Bonaccorso
,
F.
,
Fal’Ko
,
V.
et al. (
2015
)
Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems
.
Nanoscale
7
:
4598
4810
.
4.
Roberts
,
A.
,
Cormode
,
D.
,
Reynolds
,
C.
Newhouse-Illige
, T.,
LeRoy
,
B.J.
&
Sandhu
,
A.S.
(
2011
)
Response of graphene to femtosecond high-intensity laser irradiation
.
Appl. Phys. Lett.
99
,
051912
.
5.
Kalita
,
G.
,
Qi
,
L.
,
Namba
,
Y.
,
Wakita
,
K.
&
Umeno
,
M.
(
2011
)
Femtosecond laser induced micropatterning of graphene film
.
Materials Letters
65
,
1569
1572
.
6.
Zhang
,
W.
,
Li
,
L.
,
Wang
,
Z.B.
Pena
, A. A.,
Whitehead
,
D. J.
,
Zhong
,
M. L.
,
Lin
,
Z.
&
Zhu
,
H. W.
(
2012
)
Ti:sapphire femtosecond laser direct micro-cutting and profiling of graphene: Applied Physics A
.
Appl. Phys. A
109
,
291
297
.
7.
Yoo
,
J.-H.
,
Bin In
,
J.
,
Bok
Park
, J.,
Jeon
,
H.
&
Grigoropoulos
,
C.P.
(
2012
)
Graphene folds by femtosecond laser ablation
.
Appl. Phys. Lett.
100
,
233124
.
8.
Stöhr
,
R.J.
,
Kolesov
,
R.
,
Xia
,
K.
&
Wrachtrup
,
J.
(
2011
)
All-optical high-resolution nanopatterning and 3D suspending of graphene
.
ACS Nano
5
,
5141
5150
.
9.
Sahin
,
R.
,
Simsek
,
E.
&
Akturk
,
S.
(
2014
)
Nanoscale patterning of graphene through femtosecond laser ablation
.
Appl. Phys. Lett.
104
,
53118
.
10.
Sahin
,
R.
,
Akturk
,
S.
&
Simsek
,
E.
(
2014
)
Quantifying the quality of femtosecond laser ablation of graphene
.
Appl. Phys. A
116
,
555
560
.
11.
Gil-Villalba
,
A.
,
Xie
,
C.
,
Salut
,
R.
,
Furfaro
,
L.
,
Giust
,
R.
,
Jacquot
,
M.
,
Lacourt
,
P. A.
,
Dudley
,
J. M.
&
Courvoisier
,
F.
(
2015
)
Deviation from threshold model in ultrafast laser ablation of graphene at sub-micron scale
.
Appl. Phys. Lett.
107
,
61103
.
12.
Dong
,
T.
,
Sparkes
,
M.
,
Durkan
,
C.
&
O’Neill
,
W.
(
2016
)
Evaluating femtosecond laser ablation of graphene on SiO2/Si substrate
.
Journal of Laser Applications
28
,
22202
.
13.
Bobrinetskiy
,
I.I.
,
Emelianov
,
A.V.
,
Otero
,
N.
&
Romero
,
P. M.
(
2015
)
Patterned graphene ablation and two-photon functionalization by picosecond laser pulses in ambient conditions
.
Applied Physics Letters
107
,
43104
.
14.
Currie
,
M.
,
Caldwell
,
J.D.
,
Bezares
,
F.J.
Robinson
, J.,
Anderson
,
T.
,
Chun
,
H.
&
Tadjer
,
M.
(
2011
)
Quantifying pulsed laser induced damage to graphene
.
Appl. Phys. Lett.
99
,
211909
.
15.
Dhar
,
S.
,
Barman
,
A.R.
,
Ni
,
G.X.
,
Wang
,
X.
,
Xu
,
X. F.
,
Zheng
,
Y.
,
Tripathy
,
S.
,
Ariando
,
Rusydi
, A.,
Loh
,
K. P.
,
Rubhausen
,
M.
,
Castro
Neto
, A. H,.
Őzyilmaz
,
B.
&
Venkatesan
,
T.
(
2011
)
A new route to graphene layers by selective laser ablation
.
AIP Advances
1
,
22109
.
16.
Alexeev
,
E.
,
Moger
,
J.
&
Hendry
,
E.
(
2013
)
Photo-induced doping and strain in exfoliated graphene
.
Appl. Phys. Lett.
103
,
151907
.
17.
Wakaya
,
F.
,
Kurihara
,
T.
,
Abo
,
S.
&
Takai
,
M.
(
2013
)
Ultra-violet laser processing of graphene on SiO2/Si
.
Microelectronic Engineering
110
,
358
360
.
18.
Chang
,
T.-L.
,
Chen
,
Z.-C.
&
Tseng
,
S.-F.
(
2015
)
Laser micromachining of screen-printed graphene for forming electrode structures
.
Applied Surface Science
374
,
305
311
.
19.
van Erps
,
J.
,
Ciuk
,
T.
,
Pasternak
,
I.
,
Krajewska
,
A.
,
Strupinski
,
W.
,
van Put
,
S.
,
van Steenberge
,
G.
,
Baert
,
K.
,
Terryn
,
H.
,
Thienpont
,
H.
&
Vermeulen
,
N.
(
2015
)
Laser ablation- and plasma etching-based patterning of graphene on silicon-on-insulator waveguides
.
Opt Express
23
,
26639
26650
.
20.
Liu
,
J.M.
(
1982
)
Simple technique for measurements of pulsed Gaussian-beam spot sizes
.
Opt. Lett.
7
,
196
.
21.
Sanner
,
N.
,
Utéza
,
O.
,
Bussiere
,
B.
,
Coustillier
,
G.
,
Leray
,
A.
,
Itina
,
T.
&
Sentis
,
M.
(
2009
)
Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics
.
Applied Physics A
94
,
889
897
.
22.
Tran
,
D.V.
,
Lam
,
Y.C.
,
Zheng
,
H.Y.
Murukeshan
, V. M.,
Chai
,
J. C.
&
Hardt
,
D. E.
(
2005
)
Femtosecond laser processing of crystalline silicon
.
Innovation in Manufacturing Systems and Technology (IMST)
.
23.
Yasaei
,
P.
,
Fathizadeh
,
A.
,
Hantehzadeh
,
R.
Majee
, A. K.,
El-Ghandour
,
A.
,
Estrada
,
D.
,
Foster
,
C.
,
Aksamija
,
Z.
,
Khalili-Araghi
,
F.
&
Salehi-Khojin
,
A.
(
2015
)
Bimodal phonon scattering in graphene grain boundaries
.
Nano Lett
15
,
4532
4540
.
24.
Ishigami
,
M.
,
Chen
,
J.H.
,
Cullen
,
W.G.
Fuhrer
, M.S. &
Williams
,
E. D.
(
2007
)
Atomic structure of graphene on SiO2
.
Nano Lett
7
,
1643
1648
.
25.
Savolainen
,
J.-M.
,
Christensen
,
M.S.
&
Balling
,
P.
(
2011
)
Material swelling as the first step in the ablation of metals by ultrashort laser pulses
.
Phys. Rev. B
84
,
193410
.
26.
Honsberg
,
C.
&
Bowden
,
S.
Optical Properties of Silicon
. http://www.pveducation.org/pvcdrom/materials/optical-properties-of-silicon.
27.
Burzo
,
M.G.
,
Komarov
,
P.L.
&
Raad
,
P.E.
(
2003
)
Thermal transport properties of gold-covered thin-film silicon dioxide
.
IEEE Transactions on Components and Packaging Technologies
26
,
80
88
.
28.
Paredes
,
J.I.
,
Villar-Rodil
,
S.
,
Solis-Fernandez
,
P.
Martinez-Alonso
, A. &
Tascon
,
J. M. D.
(
2009
)
Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide
.
Langmuir
25
,
5957
5968
.
29.
Ferrari
,
A.C.
(
2006
)
Raman Spectrum of Graphene and Graphene Layers
.
Phys. Rev. Lett.
97
,
187401
.
This content is only available via PDF.
You do not currently have access to this content.