We demonstrated a method of fabricating large-area, few-layer graphene that involves performing femtosecond laser direct writing technology (FLDWT) on amorphous carbon films at a normal temperature. Amorphous carbon (A-C) films were deposited by PLD technology on Si surface. The thickness of the films was 200 nm. Arbitrary patterns designed by computer aided design software were fabricated directly on Si substrates without additional mask or setup. Compared to other reduction techniques, it is single-step, facile, and can be performed at room temperature in ambient atmosphere. Meanwhile, it was fabricated for the large areas few-layer graphene of arbitrary patterns. The laser direct writing process was also conducted at different laser influences and pulse number, and it was observed that the few-layer graphene could be obtained at an optimal laser influence. With the pulse number increasing, the defect of the few-layer graphene films was reduced. The formation of few-layer graphene was attributable to the recombination of C-atom clusters through the multi-photon absorption at an optimum laser fluence. Arbitrary patterns of few-layer graphene through femtosecond laser direct writing technologies may open the door for applications of graphene-based materials in electronic micro-devices. The discovery and development of the FLDWT growth process provide a route for the rapid fabrication of graphene-based electronic device.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
and
A. A.
Firsov
(
2004
)
Electric field effect in atomically thin carbon films
,
Science
306
,
5696
, pp.
666
669
.
2.
T.
Mueller
,
F.
Xia
, and
P.
Avouris
(
2010
)
Graphene photodetectors for high-speed optical communications
,
Nature Photonics
4
,
297
.
3.
M.
Liu
,
X.
Yin
,
E.
Ulin-Avila
,
B.
Geng
,
T.
Zentgraf
,
L.
Ju
,
F.
Wang
, and
X.
Zhang
(
2011
)
A graphene-based broadband optical modulator
,
Nature
474
,
64
.
4.
P.
Blake
,
E. W.
Hill
,
A. H. C.
Neto
,
K. S.
Novoselov
,
D.
Jiang
,
R.
Yang
,
T. J.
Booth
, and
A. K.
Geim
(
2007
)
Making graphene visible
,
Appl. Phys. Lett.
91
,
063124
.
5.
L.
Prechtel
,
L.
Song
,
D.
Schuh
,
P.
Ajayan
,
W.
Wegscheider
, and
A. W.
Holleitner
(
2012
)
Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene
,
Nat. Commun.
3
,
646
.
6.
F.
Xia
,
D. B.
Farmer
,
Y.-M.
Lin
, and
P.
Avouris
(
2010
)
Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature
,
Nano Lett.
10
,
715
.
7.
F.
Bonaccorso
,
Z.
Sun
,
T.
Hasan
, and
A. C.
Ferrari
(
2010
)
Graphene photonics and optoelectronics
,
Nat. Photonics
4
,
611
8.
Schwierz
F.
(
2010
)
Graphene transistors
,
Nat Nanotechnology
,
5
:
487
96
.
9.
Liu
CG
,
Yu
ZN
,
Neff
D
,
Zha
mu
A,
Jang
BZ
. (
2010
)
Graphene-based supercapacitor with an ultrahigh energy density
,
Nano Lett
,
10
:
4863
8
.
10.
Liu
YX
,
Dong
XC
,
Chen
P.
(
2012
)
Biological and chemical sensors based on graphene materials
,
Chem Soc Rev
,
41
:
2283
307
.
11.
X.
Li
,
W.
Cai
,
J.
An
,
S.
Kim
,
J.
Nah
,
D.
Yang
,
R.
Piner
,
A.
Velamakanni
,
I.
Jung
,
E.
Tutuc
,
S. K.
Banerjee
,
L.
Colombo
, and
R. S.
Ruoff
(
2009
)
Large-area synthesis of high-quality and uniform graphene films on copper foils
,
Science (N.Y.
)
324
,
1312
.
12.
A.
Reina
,
X.
Jia
,
J.
Ho
,
D.
Nezich
,
H.
Son
,
V.
Bulovic
,
M. S.
Dresselhaus
, and
J.
Kong
(
2009
)
Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition
,
Nano Lett.
9
,
30
.
13.
C.
Faugeras
,
A.
Nerriere
,
M.
Potemski
,
A.
Mahmood
,
E.
Dujardin
,
C.
Berger
, and
W. A.
de Heer
(
2008
)
Few-layer graphene on SiC, pyrolitic graphite, and graphene: A Raman scattering study
,
Appl. Phys. Lett.
92
,
011914
.
14.
Xiangming
Dong
,
Shibing
Liu
,
Haiying
Song
,
Peng
Gu
, and
Xiaoli
Li
(
2015
)
Few-layer graphene film fabricated by femtosecond pulselaser deposition without catalytic layers
,
Chinese Optics Letters
,
13
,
021601
.
15.
Min
Qian
,
Yun Shen
Zhou
,
Yang
Gao
,
Jong Bok
Park
,
Tao
Feng
,
Su Mei
Huang
,
Zhuo
Sun
,
Lan
Jiang
and
Yong Feng
Lu
(
2011
)
Formation of graphene sheets through laser exfoliation of highly ordered pyrolytic graphite
,
Appl. Phys. Lett.
98
,
173108
.
16.
A. C.
Ferrari
,
J. C.
Meyer
,
V.
Scardaci
,
C.
Casiraghi
,
M.
Lazzeri
,
F.
Mauri
,
S.
Piscanec
,
D.
Jiang
,
K. S.
Novoselov
,
S.
Roth
et al (
2006
)
Raman spectrum of graphene and graphene layers
,
Phys. Rev. Lett.
97
,
187401
.
17.
M. S.
Dresselhaus
,
A.
Jorio
,
M.
Hofmann
,
G.
Dresselhaus
, and
R.
Saito
(
2010
)
Perspectives on carbon nanotubes and graphene Raman spectroscopy
,
Nano Lett
,
10
.
75
.
18.
Rakesh
Arul
,
Reece N.
Oosterbeeka
,
John
Robertsone
,
Guangyuan
Xub
,
Jianyong
Jin
,
M. Cather
Simpson
, (
2016
)
The mechanism of direct laser writing of graphene features into graphene oxide films involves photoreduction and thermally assisted structural rearrangement
,
Carbon
,
99
,
423
431
19.
Park
JB
,
Xiong
W
,
Xie
ZQ
,
Gao
Y
,
Qian
M
,
Mitchell
M
, et al (
2011
)
Transparent interconnections formed by rapid single-step fabrication of graphene patterns
,
App Phys Lett
,
99
(
5
):
053103-1
3
.
20.
Guo
L
,
Jiang
HB
,
Shao
RQ
,
Zhang
YL
,
Xie
SY
,
Wang
JN
, et al (
2012
)
Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device
,
Carbon
,
50
(
4
):
1667
73
.
21.
Zhou
Y
,
Bao
QL
,
Varghese
B
,
Tang
LAL
,
Tan
CK
,
Sow
CH
, et al (
2010
)
Microstructuring of graphene oxide nanosheets using direct laser writing
,
Adv Mater
,
22
(
1
):
67
71
22.
Yonglai
Zhang
,
Li
Guo
,
Shu
Wei
,
Yinyan
He
,
Hong
Xia
,
Qidai
Chen
,
Hong-Bo
Sun
,
Feng-Shou
Xiaoa
(
2010
)
Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction
,
Nano Today
,
5
,
15
20
.
23.
Xiaohui
Ye
,
Jiangyou
Long
,
Zhe
Lin
,
Hongjun
Zhang
,
Hongwei
Zhu
,
Minlin
Zhong
(
2014
)
Direct laser fabrication of large-area and patterned graphene at room temperature
,
Carbon
,
68
,
784
790
.
24.
A. C.
Ferrari
,
J. C.
Meyer
,
V.
Scardaci
,
C.
Casiraghi
,
M.
Lazzeri
,
F.
Mauri
,
S.
Piscanec
,
D.
Jiang
,
K. S.
Novoselov
,
S.
Roth
et al, (
2006
)
Raman Spectrum of Graphene and Graphene Layers
,
Phys. Rev. Lett.
97
,
187401
.
25.
M. S.
Dresselhaus
,
A.
Jorio
,
M.
Hofmann
,
G.
Dresselhaus
, and
R.
Saito
(
2010
)
Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy
,
Nano Lett.
10
,
751
.
26.
A. T. T.
Koh
,
Y. M.
Foong
, and
D. H. C.
Chua
(
2010
)
Cooling rate and energy dependence of pulsed laser fabricated graphene on nickel at reduced temperature
,
Appl. Phys. Lett.
97
,
114102
.
27.
Harald O.
Jeschke
,
Martin E.
Garcia
, and
K.H.
Bennemann
(
2001
)
Theory for the ultrafast ablation of graphite films
,
Phy. Rev. Lett.
87
,
1
.
28.
D. H.
Reitze
,
H.
Ahn
, and
M. C.
Downer
(
1992
)
Optical properties of liquid carbon measured by femtosecond spectroscopy
,
Phys. Rev. B.
45
,
2677
.
29.
P.
Blake
,
E. W.
Hill
,
A. H. Castro
Neto
,
K. S.
Novoselov
,
D.
Jiang
,
R.
Yang
,
T. J.
Booth
, and A. K. (
2007
)
Geim Making graphene visible
,”
Appl. Phys. Lett.
91
,
063124
.
30.
S.
Houzumi
,
K.
Takeshima
,
K.
Mochiji
,
N.
Toyoda
, and
I.
Yamada
(
2008
)
Low-energy irradiation effects of gas cluster ion beams
,
Electron. Commun. Jpn.
91
,
40
.
This content is only available via PDF.
You do not currently have access to this content.