In this work, the W-(Ni)-Cu composites were fabricated by Selective Laser Melting with the different W content of 60wt.%, 70wt.%, 75wt.% and 80wt.%, respectively. The relative density, microstructure, surface morphology, thermal conductivity, thermal expansion coefficient, roughness and hardness of W-(Ni)-Cu composites were investigated by Archimedes method, scanning electron micrograph, energy disperse spectrum, thermal analyzer, differential scanning calorimeter, white-light interferometer and vickers hardness tester. The results indicated that w th the increase of W content, the homogeneous distribution of W solids evolved to contiguity and connective, densification mechanism transformed from rearrangement densification to solid-state sintering densification which resulted in the decrease of relative density, meanwhile Ni additive was responsible for the enhanced relative density. Whilst the heat transfer path transferred from preferential high conductivity phase (Cu) to the structure consisted of a core of low thermal expansion material (W) and an edge network of high thermal conductivity phase (Cu). The results showed that the thermal conductivity and thermal expansion coefficient (CTE) increased with the Cu content of the composite, while the difference of measured value and theoretical value was increased with the increase of W content. The roughness and hardness were also increased with the increase of W content.

1.
Zhou
ZJ
,
Y. S.
Kwon
. (
2005
)
Fabrication of W–Cu composite by resistance sintering under ultra-high pressure
,
Journal of Materials Processing Technology
168
,
107
11
.
2.
M.
Ardestani
,
Arabi
H
,
Rezaie
HR
,
Razavizadeh
H.
(
2009
)
Synthesis and densification of W–30wt.%Cu composite powders using ammonium meta tungstate and copper nitrate as precursors
,
Int J Refract Met. Hard Mater
27
,
796
800
.
3.
Liu
BB
,
Chen
JH
,
Xie
JX
. (
2010
)
Fabrication of W/Cu20 composite materials with nearly full density by particle size distribution method
,
Rare Met Mater Eng
39
,
0017
21
.
4.
Chen
WG
,
Kang
ZY
,
Shen
HF
,
Ding
BJ
. (
2006
)
Arc erosion behavior of a nanocomposite W–Cu electrical contact material
,
Rare Met
25
,
37
42
.
5.
Chen
PG
,
Shen
Q
,
Luo
GQ
,
Li
MJ
,
Zhang
LM
. (
2013
)
The mechanical properties of W–Cu composite by activated sintering
,
Int J Refract Met Hard Mater
36
,
220
24
.
6.
Ibrahim
H
,
Aziz
A
,
Rahmat
A.
(
2014
)
Enhanced liquid-phase sintering of W–Cu composites by liquid infiltration
,
Int J Refract Met Hard Mater
43
,
222
26
.
7.
Yih
SWH
,
Wang
CT
. (
1979
)
Tungsten sources, metallurgy, properties and applications
,
Plenum Press
,
46
pp.
8.
Tolosa
I
,
Garciandia
F
,
Zubiri
F
,
Zapirain
F
,
Esnaola
. (
2010
)
A Study of mechanical properties of AISI 316 stainless steel processed by “selective laser melting” following different manufacturing strategies
,
Int J Adv Manuf Technol
51
,
639
47
.
9.
Simchi
A.
(
2006
)
Direct laser sintering of metal powders: mechanism,kinetics and microstructure features
,
Mater Sci Eng A
428
,
148
58
.
10.
Wang
Y
,
Bergstrom
J
,
Burman
C.
(
2006
)
Characterization of an iron-based laser sintered material
,
J Mater Process Technol
172
,
77
87
.
11.
Delgado
J
,
Ciurana
J
,
Rodriguez
CA
. (
2012
)
Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials
,
Int J Adv Manuf Technol
60
,
601
10
.
12.
Childs
THC
,
Hauser
C
,
Badrossamay
M.
Selective laser sintering (melting) of stainless and tool steel powders:experiments and modelling
.
Proc IME B J Eng Manufact
2005
;
219
:
339
57
.
13.
Li
RD
,
Liu
JH
,
Shi
YS
,
Wang
L
,
Jiang
W.
(
2012
)
Balling behavior of stainless steel and nickel powder during selective laser melting process
,
Int J Adv Manuf Technol
59
,
1025
35
.
14.
Yan
AR
,
Yang
TT
,
Wang
YL
,
Du
Y
,
Ma
ZH
,
Wang
ZY
. (
2015
)
Forming process and high-temperature mechanical properties of variable energy laser selective melting manufacturing IN718 superalloy
,
Optics and Precision Eng Engineering
23
,
1695
1704
.
15.
Mumtaz
KA
,
Erasenthiran
P
,
Hopkinson
N.
(
2008
)
High density selective laser melting of waspaloy
,
J Mater Process Technol
195
,
77
87
.
16.
Wang
FD
. (
2012
)
Mechanical property study on rapid additive layer manufacture Hastelloy X alloy by selective laser melting technology
,
Int J Adv Manuf Technol
58
,
545
.
17.
Song
B
,
Dong
SJ
,
Liao
HL
,
Coddet
C.
(
2012
)
Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering
,
Int J Adv Manuf Technol
61
,
967
.
18.
Hollander
DA
,
von Walter
M
,
Wirtz
T
,
Sellei
R
,
Schmidt-Rohlging
B
,
Paar
O
,
Eril
HJ
. (
2006
)
Structural,mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming
,
Biomaterials
27
,
955
63
.
19.
Warnke
PH
,
Douglas
T
,
Wollny
P
,
Sherry
E
,
Steiner
M
,
Galonska
S
et al (
2009
).
Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering
,
Tissue Eng Part C-Methods
15
,
115
124
.
20.
Kruth
JP
,
LEVY
G
,
Klocke
F
,
Childs
THC
. (
2007
)
Consolidation phenomena in laser and powder-bed based layered manufacturing
,
Manuf Technol
56
,
730
59
.
21.
Zhang
DQ
,
Cai
QZ
,
Liu
JH
,
He
J
,
Li
RD
. (
2013
)
Microstructural evolvement and formation of selective laser meltting W-Ni-Cu composites powder
,
Int J Adv Manuf Technol
67
,
2233
42
.
22.
Kumer
. (
2009
)
Sliding wear behavior of dedicated iron-based SLS materials
,
Int J Adv Manuf Technol
43
,
337
47
.
23.
Gu
DD
,
Shen
YF
. (
2009
)
Effects of processing parameters on consolidation and microstructure of W-Cu components by DMLS
,
J Alloys and Compd
473
,
107
15
.
24.
Chen
P
,
Luo
G
,
Shen
Q
, et al (
2013
)
Thermal and electrical properties of W–Cu composite produced by activated sintering
.
Materials & Design
46
,
101
105
.
25.
Lee
YJ
,
Lee
BH
,
Kim
GS
. (
2006
)
Evaluation of conductivity in W–Cu composites through the estimation of topological microstructures
.
Materials Letters
60
,
2000
2003
.
26.
Zheng
L
,
Liu
J
,
Li
S.
(
2015
)
Investigation on preparation and mechanical properties of W–Cu–Zn alloy with low W–W contiguity and high ductility
,
Materials & Design
86
,
297
304
.
27.
Simchi
A.
(
2006
)
Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features
,
Materials Science & Engineering A
428
,
148
58
.
28.
Chawla
N
,
Shen
YL
. (
2001
)
Mechanical behavior of particle reinforced metal matrix composites
,
Adv Eng Mater
6
,
357
370
.
29.
Gessinger
GH
,
Melton
KN
. (
1977
)
Burn-off behavior of W-Cu contact materials in an electric-arc
,
Powder Metall
9
,
67
72
.
30.
Stevens
AJ
. (
1974
)
Powder metallurgy solutions to electrical-contact problems
.
Powder Metallurgy
17
,
331
346
.
31.
Johnson
JL
,
Brezovsky
JJ
,
German
RM
. (
2005
)
Effect of liquid content on distortion and rearrangement densification of liquid-phase-sintered W-Cu
,
Metallurgical & Materials Transactions A
36
,
1557
1565
.
32.
Randall
M
, German. (
1994
)
A model for the thermal properties of liquid phase sintered composites
,
Metal powder report
49
,
1745
1752
.
33.
Guan
ZD
,
Zhang
ZT
,
Jiao
JS
. (
2013
)
Physical property of inorganic materials
,
Tsinghua University Press
, pp
119
.
34.
Johnson
JL
. (
2015
)
Activated liquid phase sintering of W–Cu and Mo–Cu
,
International Journal of Refractory Metals & Hard Materials
53
,
80
86
.
35.
Xin
Z
,
Liu
XH
,
Zhang
DD
. (
2015
)
Balling phenomenon in selective laser melted tungsten
,
Journal of Materials Processing Technology
222
,
33
42
.
36.
Ventola
L
,
Robotti
F
,
Dialameh
M.
(
2014
)
Rough surfaces with enhanced heat transfer for electronics cooling by direct metal laser sintering
,
International Journal of Heat & Mass Transfer
75
,
58
74
.
This content is only available via PDF.
You do not currently have access to this content.