Laser additive manufacturing, LAM, involves complex physical mechanisms, such as melt flow, powder incorporation and smoothening by surface tension. Observation of the process by a high speed imaging camera provides information on the melt flow mechanisms at the surface. LAM can be categorized into Selective Laser Melting, SLM, and Direct Metal Deposition, DMD. During SLM powder grains frequently gather to larger drops that subsequently are incorporated into the very long melt pool. The transformation of the spacious powder bed to a dense, solid track causes a density increase that drags powder particles towards the molten pool. Carbon particles as part of the powder in the melt pool started flashing in phase with pulsed laser irradiation, which can be useful for detection purposes. During DMD, the travelling powder leaving the nozzle can experience gathering ahead of the melt pool before incorporation. Depending on the location of the interaction of a powder particle with the melt pool, time can become too short for melting. Then the particle sticks to the surface. Particles can even be reflected from the melt pool. Moreover, under certain conditions the particles travelling through the laser beam not only can experience melting but even boiling. The ablation pressure generated by the latter rapidly accelerates the particle in direction of the laser beam. Since most phenomena in LAM take place at the surface, high speed imaging provides highly valuable information to understand and optimize the process. In particular, for the blown powder process two camera views, from the top and side, are of complementary benefit. Statistical analysis can provide additional quantitative information.

1.
Dai
,
D.
&
Gu
,
D
(
2016
)
Influence of thermodynamics within molten pool on migration and distribution state of reinforcement during selective laser melting of AlN/AlSi10Mg composites
.
International Journal of Machine Tools and Manufacture
100
,
14
24
.
2.
Engeli
,
R.
,
Etter
,
T.
,
Hövel
,
S.
, &
Wegener
,
K.
(
2016
)
Processability of different In 738 powder batches by selective laser melting
.
Journal of Materials Processing Technology
229
,
484
491
.
3.
Gedda
,
H.
,
Kaplan
,
A.F.H.
&
Powell
,
J.
(
2005
)
Melt-solid interactions in laser cladding and laser casting
.
Metallurgical and Materials Transactions B
,
36B
,
683
689
.
4.
Kaplan
,
A.F.H.
&
Groboth
,
G.
:
Process analysis of laser beam cladding (2001) Trans ASME
:
Journal of Manufacturing Science and Engineering
,
123
,
609
614
.
5.
Bugeda
M. C. G.
&
Lombera
G.
(
1999
)
Numerical prediction of temperature and density distributions in selective laser sintering processes
.
Rapid Prototyping Journal
5
,
21
26
.
6.
Gusarov
,
A.
&
Smurov
,
I.
(
2010
)
Modeling the interaction of laser radiation with powder bed at selective laser melting
.
Physics Procedia
5
,
381
394
.
7.
Yadroitsev
,
I.
,
Gusarov
,
A.
,
Yadroitsava
,
I.
, &
Smurov
,
I.
(
2010
).
Single track formation in selective laser melting of metal powders
.
Journal of Materials Processing Technology
,
210
,
1624
1631
.
8.
Khairallah
,
S. A.
&
Anderson
,
A.
(
2014
)
Mesoscopic simulation model of selective laser melting of stainless steel powder
.
Journal of Materials Processing Technology
214
,
2627
2636
.
9.
Schleifenbaum
,
H.
,
Diatlov
,
A.
,
Hinke
,
C.
,
Bültmann
,
J.
, &
Voswinckel
,
H.
(
2011
)
Direct photonic production: towards high speed additive manufacturing of individualized goods
.
Production Engineering
5
,
359
371
.
10.
Chen
,
Y.
,
Zhang
,
K.
,
Huang
,
J.
,
Hosseini
,
S. R. E.
, &
Li
,
Z.
(
2016
)
Characterization of heat affected zone liquation cracking in laser additive manufacturing of Inconel 718
.
Materials & Design
90
,
586
594
.
11.
Resch
,
M.
,
Kaplan
,
A.F.H.
&
Schuöcker
D.
(
2000
) Laser-assisted generating of three-dimensional parts by the blown powder process,
Proc.XIII GCL-HPL 2000
, editors:
A.
Lapucci
,
M.
Ciofini
, Sept. 18-22,
2000
,
Florence (I), SPIE
,
4184
,
555
558
.
12.
Schopphoven
,
T.
,
Gasser
,
A.
,
Wissenbach
,
K.
, &
Poprawe
,
R.
(
2015
)
Investigations on ultra-high-speed laser material deposition as alternative for hard chrome plating and thermal spraying
.
The International Congress on Applications of Lasers & Electro-Optics (ICALEO
),
Atlanta GA, USA
: October 18-22
2015
,
1601
.
13.
Szost
,
B. A.
,
Terzi
,
S.
,
Martina
,
F.
,
Boisselier
,
D.
,
Prytuliak
,
A.
,
Pirling
,
T.
,
Hofmann
,
M.
, &
Jarvis
,
D. J.
(
2016
)
A comparative study of additive manufacturing techniques: Residual stress and microstructural analysis of clad and WAAM printed Ti-6Al-4V components
.
Materials & Design
89
,
559
567
.
14.
Wang
,
T.
,
Zhu
,
Y.
,
Zhang
,
S.
,
Tang
,
H.
, &
Wang
,
H.
(
2015
)
Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing
.
Journal of Alloys and Compounds
632
,
505
513
.
15.
Zhong
,
C.
,
Biermann
,
T.
,
Gasser
,
A.
, &
Poprawe
,
R.
(
2015
).
Experimental study of effects of main process parameters on porosity, track geometry, deposition rate, and powder efficiency for high deposition rate laser metal deposition
.
Journal of Laser Applications
,
27
,
042003
.
16.
Pinkerton
,
A. J.
(
2015
).
Advances in the modeling of laser direct metal deposition
.
Journal of Laser Applications
,
27
,
S15001
.
17.
Thompson
,
S. M.
,
Bian
,
L.
,
Shamsaei
,
N.
, &
Yadollahi
,
A.
(
2015
)
An overview of direct laser deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics
.
Additive Manufacturing
8
,
36
62
.
18.
Kaplan
,
A.F.H.
,
Norman
,
P.
,
Powell
,
J.
,
Soldatov
,
A.
,
Fang
,
S.
&
Baughman
,
R.
: Incorporation of CNT-yarns into metals by laser melting of powder,
Proc. ICALEO
,
Anaheim/LA, CA, USA
, September 24-27,
2012
, LIA, #P135, pp
239
246
(
2012
).
This content is only available via PDF.
You do not currently have access to this content.