Hot cracking is a fatal defect occurring in welding of alloys. The heat input during the welding process leads to thermomechanical stress and strain in the material. Hot cracking is mainly caused by these thermomechanical loads, as they affect the solidification zone. The spatially resolved measurement of these strains during laser welding of the AlMgSi-alloy AA6014 close to the edge of sheet metals is of major interest to describe the mechanism of hot-crack formation.

Lateral displacements were measured by digital image correlation. The use of a high-speed-camera enabled a temporal resolution of 1 ms. A spatial resolution of a image scale of 100 px/mm was achieved by high optical magnification and a fine stochastic pattern. Due to the low melting temperature of aluminium alloys, the paint of the applied pattern was not affected by the heat. Therefore, it was possible to determine the deformation in the immediate vicinity of the solidification zone.

To create different strain and stress conditions, welds in different edge distances were performed. Welding in an edge distance of 4 mm resulted in pure tensile strain and reproducible centerline cracking. When welding in a larger edge-distance of 6 mm transversal compressive strain surrounded the weld-pool. However, the compression was followed by a tensile strain, sufficient intense to initiate a crack. In case of welding in 8 mm edge distance there was no tensile strain present to initiate a hot crack.

1.
Schuster
,
J.
(
2009
)
Heißrisse in Schweißverbindungen: Entstehung, Nachweis und Vermeidung, Habilitationsschrift, Technische Universität Chemnitz
, Chemnitz, Germany.
2.
Stritt
,
P.
(
2016
)
Prozessstrategien zur Vermeidung von Heißrissen beim Remote-Laserstrahlschweißen von AlMgSi 6016
, Dissertation,
Inst. f. Strahlwerkzeuge, Universität Stuttgart, Stuttgart
,
Germany
.
3.
Stritt
,
P.
&
Weller
,
D.
(
2014
)
Temperature and Stress Behavior During Close-Edge Laser Welding
,
Laser Technik Journal
Nr.
3
, pp.
54
56
.
4.
Borland
,
J. C.
(
1960
)
Generalized theory of super solidus cracking in welds (and castings
),
Brit. Welding Journal
No.
7
, pp.
508
512
.
5.
Pellini
,
W.S
(
1952
)
Strain Theory of Hot Tearing
, Foundry No.
80
, pp.
125
199
.
6.
Feurer
,
U.
(
1976
)
Mathematisches Modell der Warmrissneigung von binären Aluminiumlegierungen
,
Giesserei Forschung
28
.
7.
Rappaz
,
M
,
Drezet
,
J.-M.
&
Germaud
,
M.
(
1999
)
A New Hot-Tearing Criterion
,
Metallurgical and Materials A
Vol.
30A
, pp.
449
455
.
8.
Arata
,
Y.
&
Matsuda
,
F.
Et Al. (
1976
)
Solidification crack susceptibility of aluminium alloy weld metals (Report I): Characteristics of Ductility Curves during Solidification by Means of the Trans-Varestraint Test
,
Transactions of JWRI
Vol.
5
No.
2
, pp.
53
67
.
9.
Prokhorov
,
N. N.
&
Jakushin
,
B. F.
(
1968
)
Theorie und Verfahren zur Bestimmung der technologischen Festigkeit von Metallen während des Kristallisationsprozesses beim Schweißen
,
Schweißtechnik
Nr.
18
, pp.
8
11
.
10.
Lancaster
,
J. F.
(
1999
)
Metallurgy of Welding
,
Abbington
,
Abbington Publishing
.
11.
Co. Gesellschaft fuer optische Messsysteme mbH, Braunschweig
, Germany.
12.
Luo
,
P.-F
,
Chao
,
Y. J.
&
Sutton
,
M. A.
(
1994
)
Application of stereo vision to three-dimensional deformation analyses in fracture experiments
,
Optical engineering
Vol.
33
No.
3
, pp.
981
990
.
13.
Sutton
,
M. A
, et al (
2000
) Advances in Two-Dimensional and Three-Dimensional Computer Vision, in
Photomechanics, Topics Appl. Phys
77
. (
Rastogi
,
P.K.
(Ed.)),
Berlin Heidelberg
,
Springer-Verlag
, pp.
323
372
.
14.
Bing
Pan
, et al (
2009
)
Two-dimensional digital image correlationfor in-plane displacement and strainmeasurement: a review
,
Meas. Sci. Technol.
20
.
This content is only available via PDF.
You do not currently have access to this content.