Although existing methods (chemical vapor deposition, mechanical exfoliation, etc.) are available to produce graphene, the lack of thickness control limits further graphene applications. Laser-thinning is a new technique for modifying graphene and other related two-dimensional (2D) layered nanomaterials. In this study, we demonstrate an approach to precise thinning of graphene films to a specific thickness using a femtosecond (fs) laser raster scanning. By controlling laser fluence and scanning duration, graphene thinning with an atomic layer precision, namely layer-by-layer graphene removal, has been realized. Graphene with smooth surface and controlled thickness is produced. An fs-laser-based four-wave mixing (FWM) system is developed that is capable of distinguishing graphene of different thicknesses and counting the number of layers using the linear relationship between the FWM signal intensity and the graphene thickness, which is more accurate and much faster than Raman microscopy. Furthermore, FWM imaging has been successfully applied to achieve in situ, real-time monitoring of the fs laser graphene thinning process based on the large optical nonlinearity of graphene. This method can not only realize large-scale thinning of various 2D nanomaterials with atomic layer precision, but also provide in situ, rapid imaging capability of 2D nanomaterials for accurate assessment of the number of layers.

1.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D.
,
Zhang
,
Y.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
&
Firsov
,
A. A.
(
2004
)
Electric Field Effect in Atomically Thin Carbon Films
.
Science
306
,
666
669
.
2.
Bonaccorso
,
F.
,
Sun
,
Z.
,
Hasan
,
T.
&
Ferrari
,
A. C.
(
2010
)
Graphene photonics and optoelectronics
.
Nat Photon
4
,
611
622
.
3.
Pallecchi
,
E.
,
Lafont
,
F.
,
Cavaliere
,
V.
,
Schopfer
,
F.
,
Mailly
,
D.
,
Poirier
,
W.
&
Ouerghi
,
A.
(
2014
)
High Electron Mobility in Epitaxial Graphene on 4H-SiC(0001) via post-growth annealing under hydrogen
.
Sci. Rep.
4
.
4.
Woszczyna
,
M.
,
Friedemann
,
M.
,
Pierz
,
K.
,
Weimann
,
T.
&
Ahlers
,
F. J.
(
2011
)
Magneto-transport properties of exfoliated graphene on GaAs
.
Journal of Applied Physics
110
, -.
5.
Lee
,
K.
,
Kim
,
S.
,
Points
,
M. S.
,
Beechem
,
T. E.
,
Ohta
,
T.
&
Tutuc
,
E.
(
2011
)
Magnetotransport Properties of Quasi-Free-Standing Epitaxial Graphene Bilayer on SiC: Evidence for Bernal Stacking
.
Nano Letters
11
,
3624
3628
.
6.
Lee
,
C.
,
Wei
,
X.
,
Kysar
,
J. W.
&
Hone
,
J.
(
2008
)
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
.
Science
321
,
385
388
.
7.
Ovid’ko
,
I.
(
2013
)
MECHANICAL PROPERTIES OF GRAPHENE
.
REVIEWS ON ADVANCED MATERIALS SCIENCE
34
,
1
11
.
8.
Schwierz
,
F.
(
2010
)
Graphene transistors
.
Nat Nano
5
,
487
496
.
9.
Wang
,
X.
,
Zhi
,
L.
&
Müllen
,
K.
(
2007
)
Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells
.
Nano Letters
8
,
323
327
.
10.
Park
,
H.
,
Brown
,
P. R.
,
Bulović
,
V.
&
Kong
,
J.
(
2011
)
Graphene As Transparent Conducting Electrodes in Organic Photovoltaics: Studies in Graphene Morphology
,
Hole Transporting Layers, and Counter Electrodes. Nano Letters
12
,
133
140
.
11.
Bolotin
,
K. I.
,
Ghahari
,
F.
,
Shulman
,
M. D.
,
Stormer
,
H. L.
&
Kim
,
P.
(
2009
)
Observation of the fractional quantum Hall effect in graphene
.
Nature
462
,
196
199
.
12.
Liu
,
W. W.
&
Wang
,
J. N.
(
2011
)
Direct exfoliation of graphene in organic solvents with addition of NaOH
.
Chemical Communications
47
,
6888
6890
.
13.
Green
,
A. A.
&
Hersam
,
M. C.
(
2009
)
Solution Phase Production of Graphene with Controlled Thickness via Density Differentiation
.
Nano Letters
9
,
4031
4036
.
14.
Mattevi
,
C.
,
Kim
,
H.
&
Chhowalla
,
M.
(
2011
)
A review of chemical vapour deposition of graphene on copper
.
Journal of Materials Chemistry
21
,
3324
3334
.
15.
Zhang
,
Y.
,
Zhang
,
L.
&
Zhou
,
C.
(
2013
)
Review of Chemical Vapor Deposition of Graphene and Related Applications
.
Accounts of Chemical Research
46
,
2329
2339
.
16.
Zhou
,
Y.
,
Bao
,
Q.
,
Varghese
,
B.
,
Tang
,
L. A. L.
,
Tan
,
C. K.
,
Sow
,
C.-H.
&
Loh
,
K. P.
(
2010
)
Microstructuring of Graphene Oxide Nanosheets Using Direct Laser Writing
.
Advanced Materials
22
,
67
71
.
17.
Han
,
G. H.
,
Chae
,
S. J.
,
Kim
,
E. S.
,
Güneş
,
F.
,
Lee
,
I. H.
,
Lee
,
S. W.
,
Lee
,
S. Y.
,
Lim
,
S. C.
,
Jeong
,
H. K.
,
Jeong
,
M. S.
&
Lee
,
Y. H.
(
2010
)
Laser Thinning for Monolayer Graphene Formation: Heat Sink and Interference Effect
.
ACS Nano
5
,
263
268
.
18.
Dimiev
,
A.
,
Kosynkin
,
D. V.
,
Sinitskii
,
A.
,
Slesarev
,
A.
,
Sun
,
Z.
&
Tour
,
J. M.
(
2011
)
Layer-by-Layer Removal of Graphene for Device Patterning
.
Science
331
,
1168
1172
.
19.
Roberts
,
A.
,
Cormode
,
D.
,
Reynolds
,
C.
,
Newhouse-Illige
,
T.
,
LeRoy
,
B. J.
&
Sandhu
,
A. S.
(
2011
)
Response of graphene to femtosecond high-intensity laser irradiation
.
Appl. Phys. Lett.
99
, -.
20.
Kim
,
H.
,
Sheps
,
T.
,
Collins
,
P. G.
&
Potma
,
E. O.
(
2009
)
Nonlinear Optical Imaging of Individual Carbon Nanotubes with Four-Wave-Mixing Microscopy
.
Nano Letters
9
,
2991
2995
.
21.
Hendry
,
E.
,
Hale
,
P. J.
,
Moger
,
J.
,
Savchenko
,
A. K.
&
Mikhailov
,
S. A.
(
2010
)
Coherent Nonlinear Optical Response of Graphene
.
Physical Review Letters
105
,
097401
.
22.
Wang
,
Y.
,
Lin
,
C.-Y.
,
Nikolaenko
,
A.
,
Raghunathan
,
V.
&
Potma
,
E. O.
(
2011
)
Four-wave mixing microscopy of nanostructures
.
Adv. Opt. Photon.
3
,
1
52
.
23.
Sheps
,
T.
,
Brocious
,
J.
,
Corso
,
B. L.
,
Gül
,
O. T.
,
Whitmore
,
D.
,
Durkaya
,
G.
,
Potma
,
E. O.
&
Collins
,
P. G.
(
2012
)
Four-wave mixing microscopy with electronic contrast of individual carbon nanotubes
.
Physical Review B
86
,
235412
.
24.
Currie
,
M.
,
Caldwell
,
J. D.
,
Bezares
,
F. J.
,
Robinson
,
J.
,
Anderson
,
T.
,
Chun
,
H.
&
Tadjer
,
M.
(
2011
)
Quantifying pulsed laser induced damage to graphene
.
Appl. Phys. Lett.
99
,
211909
.
This content is only available via PDF.
You do not currently have access to this content.