We present our recent progress on a new type of nanoaquarium based on electrofluidic devices fabricated by hybrid femtosecond (fs) laser processing. The hybrid fs laser processing involves two steps of (1) fs laser direct writing followed by thermal treatment, successive chemical wet etching and additional annealing for fabrication of three-dimensional (3D) microfluidic structures inside photosensitive glass, and then (2) water-assisted fs laser direct-write ablation followed by electroless metal plating for flexible deposition of patterned metal films on any desired locations in fabricated microfluidic structures. To show the applications of the nanoaquarium, fabricated electrofluidics are used to electrically manipulate the movement of microorganisms and worms in the microscale spaces. Flexible patterning and arrangement of electrodes to produce controllable AC electric fields in the closed microfluidic channels allows us to three-dimensionally manipulate the motions of Euglena cells due to electro-orientation. Meanwhile, 3D glass microfluidic channels monolithically integrated with vertical electrodes between which a DC voltage is applied enable us to flexibly control the movement of the nematode worm C. elegans in a closed channel based on electrotaxis.

1.
Hanada
,
Y.
,
Sugioka
,
K.
,
Kawano
,
H.
,
Ishikawa
,
I.S.
,
Miyawaki
,
A.
&
Midorikawa
,
K.
(
2008
)
Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass
,
Biomed. Microdevices
10
,
403
410
.
2.
Xu
,
J.
,
Wu
,
D.
,
Hanada
,
Y.
,
Chen
,
C.
,
Wu
,
S.
,
Cheng
,
Y.
,
Sugioka
,
K.
&
Midorikawa
,
K.
(
2013
)
Electrofluidics fabricated by space-selective metallization in glass microfluidic structures using femtosecond laser direct writing
,
Lab Chip
13
,
4608
4616
.
3.
Xu
,
J.
,
Wu
,
D.
,
Ip
,
J. Y.
,
Midorikawa
,
K.
&
Sugioka
K.
(
2015
)
Vertical sidewall electrodes monolithically integrated into 3D glass microfluidic chips using water-assisted femtosecond-laser fabrication for in situ control of electrotaxis
,
RSC Adv.
5
,
24072
24080
.
4.
Hanada
,
Y.
,
Sugioka
,
K.
&
Midorikawa
,
K.
(
2008
)
Selective metallization of photostructurable glass by femtosecond laser direct writing for biochip application
,
Appl. Phys. A
90
,
603
607
.
5.
Minoura
,
I.
&
Muto
,
E.
(
2006
)
Dielectric measurement of individual microtubules using the electroorientation method
,
Biophys J.
90
,
3739
3748
.
6.
Yang
,
M.
&
Zhang
,
X.
(
2007
)
Electrical assisted patterning of cardiac myocytes with controlled macroscopic anisotropy using a microfluidic dielectrophoresis chip
,
Sensors and Actuators A
135
,
73
79
.
7.
Choi
,
J.W.
,
Rosset
,
S.
,
Niklaus
,
M.
,
Adleman
,
J.R.
,
Shea
,
H.
&
Psaltis
,
D.
(
2010
)
3-dimensional electrode patterning within a microfluidic channel using metal ion implantation
,
Lab Chip
10
,
4608
4616
.
8.
Gabel
,
C.V.
,
Gabel
,
H.
,
Pavlichin
,
D.
,
Kao
,
A.
,
Clark
,
D.A.
&
Samuel
,
A.D.
(
2007
)
Neural circuits mediate electrosensory behavior in Caenorhabditis elegans
,
J Neurosci.
27
,
7586
7596
.
9.
Rezai
,
P.
,
Siddiqui
,
A.
,
Selvaganapathy
,
P.R.
&
Gupta
,
B.P.
(
2010
)
Electrotaxis of Caenorhabditis elegans in a microfluidic environment
,
Lab Chip
10
,
220
226
.
10.
Li
,
J.
,
Nandagopal
,
S.
,
Wu
,
D.
,
Romanuik
,
S.F.
,
Paul
,
K.
,
Thomson
,
D.J.
&
Lin
,
F.
(
2011
)
Activated T lymphocytes migrate toward the cathode of DC electric fields in microfluidic devices
,
Lab Chip
11
,
1298
1304
.
11.
Wang
,
L.
,
Flanagan
,
L.A.
,
Monuki
,
E.
,
Jeon
,
N.L.
&
Lee
,
A.P.
(
2007
)
Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry
,
Lab Chip
7
,
1114
1120
.
12.
Sukas
,
S.
,
Schreuder
,
E.
,
Wagenaar
,
B.
de Swennenhuis
,
J.
,
Berg
,
A.
van den, Terstappen
,
L.
&
Gac
,
S.Le
. (
2014
)
A novel side electrode configuration integrated in fused silica microsystems for synchronous optical and electrical spectroscopy
,
Lab Chip
14
,
1821
1825
.
This content is only available via PDF.
You do not currently have access to this content.