Titanium Matrix Composites (TMC’s) containing various volume fractions of (TiB+TiC) particles were obtained by the direct metal deposition (DMD) of blends of (Ti-6Al-4V+B4C) projected powders, through the in-situ chemical reaction 5 Ti + B4C→4 TiB+TiC. Process optimization in terms of laser power and scanning speed allowed obtaining homogeneously distributed TiB whiskers within Titanium matrix, a full solubilisation of C for low B4C contents (0.5 wt. % and 1.5 wt. %), and the formation of a small amount of globular TiC particles at higher B4C content (3 %). Comparisons with Ti-6Al-4V DMD walls revealed a severe grain refinement on TMC’s due to enhanced grain germinations on TiB whiskers, even for low B4C contents. Last, mechanical investigations indicated 10 to 15 % increases of Vickers hardness, and a constant 10 % increase of young’s modulus on a large temperature range (20-600°C) whatever the B4C content.

1.
P.
Peyre
,
R.
Neveu
, et al
Analytical and numerical modelling of the direct metal deposition laser process
”,
J.Phys D: Applied Physics
,
41
(
2008
),
025403
.
2.
W.
Liu
and
J.N.
DuPont
,
Fabrication of functionally graded TiC/Ti composites by Laser engineered Net Shaping
,
Scripta Materialia
,
48
(
2003
),
1337
1342
3.
R.
Banerjee
,
P.C.
Collins
et al,
Direct Metal Deposition of in-situ Ti-6Al-4V – TiB composites
,
Mat. Sci & Eng. A358
(
2003
),
343
349
4.
Y.
Zhang
,
J.
Sun
,
R.
Vilar
,
Characterization of (TiB+TiC)/TC4 in-situ titanium matrix composites by laser direct deposition
,
J. Mat. Proc. Techn
,
211
(
2011
),
597
603
5.
T.
Kühnle
,
K.
Partes
,
In-situ formation of titanium boride and titanium carbide by selective laser melting
,
Physics Procedia
39
(
2012
),
432
438
6.
Y.S.
Tian
,
C.Z.
Chen
et al,
Wear properties of alloyed layers produced by laser surface alloying of pure titanium with B4C and Ti mixed powders
,
J. Mat. Sci
,
40
(
2005
),
4387
4390
7.
J.
Li
,
Z.
Yu
, Z.,
H.
Wang
,
Microstructural characterization of titanium matrix composite coatings reinforced by in situ synthesized TiB + TiC fabricated on Ti6Al4V by laser cladding
,
Rare Metals
29
(
5
)
2010
, pp.
465
472
8.
J.
Liang
,
S.
Chen
et al,
Study on microstructure of laser in-situ formation of TiBx and TiC titanium composite coatings
,
Materials Science Forum
,
686
, (
2011
),
646
653
9.
M.M.
Wang
,
W.J.
Lu
et al,
Effect of volume fraction of reinforcement on room temperature tensile property of in-situ (TiB+TiC)/Ti matrix composites
,
Materials & Design
,
27
(
2006
),
494
498
10.
F.
Wang
,
J.
Mei
,
H.
Jiang
,
X.
Wu
,
Laser fabrication of Ti6Al4V/TiC composites using simultaneous powder and wire feed
,
Mat. Sci & Eng. A
445–446
(
2007
)
461
466
11.
J.
Wang
et al,
Microstructures and mechanical properties of investment casted titanium matrix composites with B4C addition
,
Mat. Sci & Eng.
A628
(
2015
),
366
373
12.
M.Y.
Koo
,
J.S.
Park
et al,
Effect of aspect ratios of in-situ formed TiB whiskers on the mechanical properties of TiBw/Ti-6Al-4V composites
,
Scripta Materialia
,
66
(
2012
),
487
490
13.
S.
Pouzet
,
P.
Peyre
,
C.
Gorny
,
O.
Castelnau
and
C.
Colin
, Direct Metal Deposition of titanium matrix composites: optimization of the process and microstructural analysis,
ICALEO’2013
,
Orlando (USA)
14.
S.
Sun
,
M.
Wang
et al,
The influences of trace TiB and TiC on microstructure refinement and mechanical properties of in-situ synthesized Ti matrix composites
,
Composites: part B
,
43
(
2012
),
3334
3337
This content is only available via PDF.
You do not currently have access to this content.