After a joint replacement, a stress-shielding phenomenon often appears resulting from Young’s modulus mismatch between the implant and the cortical bone. In accordance with Wolff’s law, it will result in bone resorption and could lead to loosening of the implant.

Ti-Nb beta metastable alloys are excellent candidates for biomedical applications because of their very low elastic modulus close to that of cortical bone and their high strength. This material, associated with the direct laser deposition or CLAD® process allows the fabrication of biomimetic implants. Nevertheless, Ti-Nb powders are still rather uncommon, thus the alloy could be utilized as a replacement material for Ti-6Al-4V on the implant surface only, this configuration creating an elasticity gradient.

Microstructure and phase analysis of a direct laser deposited Ti-26(at%)Nb wall revealed a fully beta microstructure. Micro-hardness tests refuted the anisotropy of the deposited alloy and tensile tests showed that the elastic properties of the CLAD® material are not far from those of the cast material. EDS analysis of a CLAD® build of Ti-26Nb on a Ti-6Al-4V substrate highlighted the diffusion of the elements of the substrate towards the deposit. Grain growth was studied with EBSD. Moreover, nanoindentation tests highlight an evolution of the elastic modulus from the substrate to the deposit.

1.
R.
Huiskes
,
H.
Weinans
, and
B.
Van Rietbergen
, “
The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stems and the Effects of Flexible Materials
,”
Clin. Orthop. Relat. Res.
, vol.
NA
, no.
274
, p.
124
134
,
1992
.
2.
P.
Laheurte
,
F.
Prima
,
A.
Eberhardt
,
T.
Gloriant
,
M.
Wary
, and
E.
Patoor
, “
Mechanical properties of low modulus beta titanium alloys designed from the electronic approach
.,”
J. Mech. Behav. Biomed. Mater.
, vol.
3
, no.
8
, pp.
565
73
, Nov.
2010
.
3.
F.
Sun
,
S.
Nowak
,
T.
Gloriant
,
P.
Laheurte
,
A.
Eberhardt
, and
F.
Prima
, “
Influence of a short thermal treatment on the superelastic properties of a titanium-based alloy
,”
Scr. Mater.
, vol.
63
, no.
11
, pp.
1053
1056
, Nov.
2010
.
4.
A.
Ramarolahy
,
P.
Castany
,
F.
Prima
,
P.
Laheurte
,
I.
Péron
, and
T.
Gloriant
, “
Microstructure and mechanical behavior of superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N biomedical alloys
.,”
J. Mech. Behav. Biomed. Mater.
, vol.
9
, pp.
83
90
, May
2012
.
5.
W.
Elmay
,
P.
Laheurte
,
A.
Eberhardt
,
B.
Bolle
,
T.
Gloriant
,
E.
Patoor
,
F.
Prima
,
D.
Laille
,
P.
Castany
, and
M.
Wary
, “
Stability and elastic properties of Ti-alloys for biomedical application designed with electronic parameters
,”
EPJ Web of Conference
,
2010
. Available: http://www.epj-conferences.org/articles/epjconf/pdf/2010/05/epjconf_ICEM14_29002.pdf
6.
W.
Elmay
,
F.
Prima
,
T.
Gloriant
,
B.
Bolle
,
Y.
Zhong
,
E.
Patoor
, and
P.
Laheurte
, “
Effects of thermomechanical process on the microstructure and mechanical properties of a fully martensitic titanium-based biomedical alloy
.,”
J. Mech. Behav. Biomed. Mater.
, vol.
18
, pp.
47
56
, Feb.
2013
.
7.
M.
Niinomi
,
M.
Nakai
, and
J.
Hieda
, “
Development of new metallic alloys for biomedical applications
.,”
Acta Biomater.
, vol.
8
, no.
11
, pp.
3888
903
, Nov.
2012
.
8.
B.
Piotrowski
,
A. A.
Baptista
,
E.
Patoor
,
P.
Bravetti
,
A.
Eberhardt
, and
P.
Laheurte
, “
Interaction of bone-dental implant with new ultra low modulus alloy using a numerical approach
.,”
Mater. Sci. Eng. C. Mater. Biol. Appl.
, vol.
38
, pp.
151
60
, May
2014
.
9.
R. E.
McMahon
,
J.
Ma
,
S. V.
Verkhoturov
,
D.
Munoz-Pinto
,
I.
Karaman
,
F.
Rubitschek
,
H. J.
Maier
, and
M. S.
Hahn
, “
A comparative study of the cytotoxicity and corrosion resistance of nickel-titanium and titanium-niobium shape memory alloys
.,”
Acta Biomater.
, vol.
8
, no.
7
, pp.
2863
70
, Jul.
2012
.
10.
T.
Wang
,
Y. Y.
Zhu
,
S. Q.
Zhang
,
H. B.
Tang
, and
H. M.
Wang
, “
Grain Morphology Evolution Behaviors of Titanium Alloy Components by Laser Melting Deposition Additive Manufacturing
,”
J. Alloys Compd.
, vol.
632
, pp.
505
513
, Feb.
2015
.
11.
B. E.
Carroll
,
T. A.
Palmer
, and
A. M.
Beese
, “
Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing
,”
Acta Mater.
, vol.
87
, pp.
309
320
, Apr.
2015
.
12.
M.
Nakai
,
M.
Niinomi
,
T.
Akahori
,
H.
Tsutsumi
, and
M.
Ogawa
, “
Effect of Oxygen Content on Microstructure and Mechanical Properties of Biomedical Ti-29Nb-13Ta-4.6Zr Alloy under Solutionized and Aged Conditions
,”
Materials Transactions
,
2009
., Available:https://www.jstage.jst.go.jp/article/matertrans/50/12/50_MA200904/_pdf.
13.
V.
Fallah
,
S. F.
Corbin
, and
A.
Khajepour
, “
Process optimization of Ti–Nb alloy coatings on a Ti–6Al–4V plate using a fiber laser and blended elemental powders
,”
J. Mater. Process. Technol.
, vol.
210
, no.
14
, pp.
2081
2087
, Nov.
2010
.
This content is only available via PDF.
You do not currently have access to this content.