Since few years, an intense research activity has been undertaken on obtaining orthopedic implants by direct laser manufacturing. Metallic (titanium alloys) heap implants have been the first parts obtained by laser cladding, with dental implants (chromium cobalt alloys) obtained by selective laser melting. In parallel, different studies have been initiated on direct manufacturing of bioceramics. These materials have the main advantage to be completely or partly replaced by real bone after colonization by bone cells. From that family, Hydroxyapatite (HAP) and Tri Calcium Phosphate (TCP) material are the best candidates because their compositions are close the real bone.

This article presents the experiments we have conducted to generate TCP structure by selective laser melting. These are part of a French research project ORTHOFLASE related to this topic. First, powder provision and quality has been identity as a critical point for the success of the project. Ultrapure TCP with very low metallic pollutant content has been manufactured.

As the TCP powder produced is very pure, it has been necessary to control its absorptivity for existing laser sources. Very low absorptivity of the powder has been evidenced at continuous laser at near infrared wavelength (YAG, fiber or near infrared diode lasers). However, the powder has exhibited a very good absorptivity for far infrared CO2 laser.

Then, a parameter study has been undertaken on an existing selective laser melting device with CO2 laser. The main parameters are the powder layer thickness, the laser power, and the travel speed. The process parameter window is determined and results of the experiments are presented.

Finally, from considerations of the material structure required for a good colonization by the bone cells, simple 3D geometries are manufactured presented in the article.

1.
J.C.
Elliot
(
1994
). Structure and chemistry of the apatites and other calcium orthophosphates.
Studies in inorganic chemistry
,
Amsterdam
,
Elsevier Science B.V.
2.
M.
Jarcho
. “
Calcium phosphate ceramics as hard tissue prosthetics
”.
Clinical Orthopaedics and Related Research
.,
157
,
259
278
,
1981
.
3.
K.
De-Groot
(
1983
). “Ceramics of calcium phosphate: preparation and properties”.
Bioceramics of calcium phosphate. K. D. Groot. Boca Raton
, Fl,
USA
,
CRC Press
:
99
114
.
4.
N.
Passuti
et
G.
Daculsi
(
1989
). “
Céramiques en phosphate de calcium en chirurgie orthopédique
”.
La Presse Médicale
,
18
:
28
31
.
5.
L.L.
Hench
(
1991
). “
Bioceramics: from concept to clinic
”.
J. Am. Ceram. Soc.
,
74
:
1487
1510
.
6.
C.
Véron
,
M.
Chanavaz
,
J.
Ferri
,
M.
Donazzan
et
H.F.
Hildebrand
(
1995
). “
Biomatériaux et biocompatibilité
”.
Rev. Stomatol. Chir. maxollifac.
, XXXIVème Congrès:
274
281
.
7.
D.
Bernache-Assollant
(
1993
). “
Les biocéramiques : élaborations et propriétés
”.
L’Industrie Céramique & Verrière.
883
:
421
436
.
8.
M.
Yashima
,
A.
Sakai
,
T.
Kamiyama
et
A.
Hoshikawa
(
2003
). “
Crystal structure of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction
”.
J. Solid State Chem.
,
175
:
272
277
.
9.
M.
Kohri
,
K.
Miki
,
D.E.
Waite
,
H.
Nakajima
et
T.
Okabe
(
1993
). “
In vitro stability of biphasic calcium phosphate ceramics
”.
Biomaterials
,
14
:
299
304
.
10.
P.S.
Eggli
,
W.
Muller
,
R. K.
Schenk
(
1988
).
Porous hydroxyapatite and tricalcium phosphates cylinders with 2 different pore-size ranges implanted in the cancellous bone of rabbits – A comparative histomorphometric and histologic study of bony ingrowth and implant substituion
.
Clinical Orthopaedics and Related Research.
127
138
11.
H.
Chaair
,
J.-C.
Heughebaert
,
M.
Heughebaert
and
M.
Vaillant
(
1994
). “
Statistical Analysis of Apatitic Tricalcium Phosphate preparation
”.
Journal of Materials Chemistry.
4
(
5
):
765
770
.
12.
S.
Raynaud
,
E.
Champion
,
D.
Bernache-Assollant
,
P.
Thomas
(
2002
). “
Calcium phosphate apatites with Ca/P atomic ratio I. Synthesis, characterization and thermal stability of powders
”.
Biomaterials; 23
;
1065
1072
.
13.
A.
Mortier
,
J.
Lemaître
et
P.G.
Rouxhet
(
1989
). “
Temperature-programmed characterization of synthetic calcium-deficient phsophate apatites
”.
Thermochim. Acta
,
143
:
265
282
.
14.
A.
Destainville
,
E.
Champion
,
D.
Bernache-Assollant
,
E.
Laborde
(
2003
). “
Synthesis, Characterization and thermal behavior of apatitic tricalcium phosphate
”.
Materials Chemistry and Physics.
80
:
269
277
.
15.
M.
Descamps
,
J. C.
Hornez
,
A.
Leriche
;
Journal of the European Cearmic Society
(
2007
). “
Effects of powder stoichiometry on the sintering ofβ-tricalcium phosphate
”.
27
;
2401
2406
.
16.
S.
Raynaud
.
Thèse de doctorat: Synthèse, frittage et propriétés mécaniques de phosphates de calcium dans le système hydroxyapatite-posphate tricalcique
.
181
.
17.
D.
Bernache-Assollant
,
A.
Ababou
,
E.
Champion
,
M. H.
Eughebaert
(
2003
). “
Sintering of calcium phosphate hydroxyapatite Ca10(PO4)6(OH)2. I. Calcination and particle growth
”.
Journal of the European Ceramic Society.
23
:
229
241
18.
S.
Michna
,
W.
Wu
,
J.
Lewis
(
2005
) “
Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffold
”.
Biomaterials
,
26
(2005);
5632
5639
19.
N.
Coulon
,
Y.
Lafaye
,
P.
Aubry
, “Analysis of the Laser Sintering Process for Direct Manufacturing of Mould”,
Proc. ICALEO2006
, paper 1803,
Phoenix
,
USA
,
2006
20.
P.
Aubry
,
P.
Robert
,
O.
Hercher
, “
Analysis of the Powder Bed Laser Melting Process For Direct Manufacturing of Metallic Components
”,
Proc. PICALO 2008
,
Beijing
,
China
,
2008
21.
P.
Aubry
,
K.
Verdier
,
T.
Malot
,
O.
Hercher
,
J.
Maisonneuve
,
C.
Colin
, “
Direct Manufacturing of Components by Laser Metal deposition an Powder Bed Laser Melting
Proc. of LAMP2009, Kobe, Japan, June
2009
22.
Ph.
Bertrand
,
F.
Bayle
,
C.
Combe
,
P.
Goeuriot
,
I.
Smurov
(
2007
). “
Ceramic components manufacturing by selective laser sintering
”.
Applied Surface Science
;
254
;
989
992
.
23.
D.
Wang
,
C.
Chen
,
J.
Ma
,
G.
Zhang
(
2008
). “
In situ synthesis of hydrixyapatite coating by lase cladding
colloids and surfaces B: Biomaterials
,
66
(2008):
155
162
D.
Wang
,
C.
Chen
,
J.
Ma
,
G.
Zhang
,
J. Solid State Chem.
,
175
:
272
277
.
24.
R.
Comesaña
,
F.
Lusquiños
,
J.
del Val
,
T.
Malot
,
A.
Riveiro
,
F.
Quintero
,
M.
Boutinguiza
,
P.
Aubry
,
J.
Pou
Laser-Assisted Processing of 3D Bioceramic Structures
”,
Proc. ICALEO
2009
, pp
1055
1061
25.
Webb
,
P.A.
(
2000
) “
A review of rapid prototyping (RP) techniques in the medical and biomedical sector
.”
J. Med. Eng. Technol.
24
,
149
153
.
26.
Griffin
,
A.
,
McMillin
,
S.
,
Griffin
,
C.
,
Barton
,
K.
(
1997
) “
Bioceramic RP materials for medical models
.”
Proceedings of the 7th International Conference on Rapid Prototyping
,
University of Dayton and Stanford University
,
355
359
.
27.
Borodajenko
N.
,
Salma
K.
, Berzina-Cimdima, “
Characterization of calium phosphate synthesis products by XRD
”, poste seesion,
11th European Powder Diffraction Conference
,
2008
This content is only available via PDF.
You do not currently have access to this content.