Skin effect suppression in planar multi-walled carbon nanotube (MWCNT)/Copper (Cu) conductors was realized at the 0-10 MHz frequency range through infrared laser irradiation of MWCNTs, which were coated on the surface of the Cu substrate via the electrophoretic deposition (EPD) method. The effect of laser irradiation and its power density on electrical and structural properties of the MWCNT/Cu conductors was investigated using a wavelength-tunable CO2 laser and then comparing the performance of the samples prepared at different conditions with that of pristine Cu. The irradiation at λ=9.219 µm proved to be effective in selective delivery of energy towards depths close to the interface, compared to the conventional rapid thermal processing (RTP) annealing method. At f=10 MHz, the ac resistance of the laser irradiated MWCNT/Cu conductors was reduced by more than one order of magnitude compared to its original value for the pristine Cu. Impedance measurements and structural characterizations indicate that this technique results in successful implementation of the nanotubes on the surface of the metallic substrate to operate as current channels with saturated skin depths and reduced contact resistance at the interface. Therefore, the limited performance of Cu conductors at high frequencies can be modified. Additionally, it was further demonstrated that the impedance reduction and the suppression of the skin effect in MWCNT/Cu conductors are in direct relation with the irradiated power density and can thus be easily controlled by this parameter.

1.
Chopra
,
S.
, &
Bauer
,
P.
(
2013
).
Driving range extension of EV with on-road contactless power transfer—A case study
.
Industrial Electronics, IEEE Transactions
,
60
,
329
338
.
2.
Pantic
,
Z.
, &
Lukic
,
S.
(
2013
).
Computationally-efficient, generalized expressions for the proximity-effect in multi-layer, multi-turn tubular coils for wireless power transfer systems
.
Magnetics, IEEE Transactions
,
49
,
5404
5416
.
3.
Enpuku
,
K.
,
Hirakawa
,
S.
,
Momotomi
,
R.
,
Matsuo
,
M.
,
Yoshida
,
T.
, &
Kandori
,
A.
(
2011
).
Design of Pickup Coil Made of Litz Wire and Cooled at 77 K for High Sensitive Measurement of AC Magnetic Fields
.
Japanese Journal of Applied Physics
,
50
,
6602
.
4.
Acero
,
J.
,
Hernandez
,
P. J.
,
Burdío
,
J. M.
,
Alonso
,
R.
, &
Barragdan
,
L.
(
2005
).
Simple resistance calculation in litz-wire planar windings for induction cooking appliances
.
Magnetics, IEEE Transactions
,
41
,
1280
1288
.
5.
Rejaei
,
B.
, &
Vroubel
,
M.
(
2004
).
Suppression of skin effect in metal⁄ ferromagnet superlattice conductors
.
Journal of Applied Physics
,
96
,
6863
6868
.
6.
Sato
,
N.
,
Endo
,
Y.
, &
Yamaguchi
,
M.
(
2012
).
Skin effect suppression for Cu/CoZrNb multilayered inductor
.
Journal of Applied Physics
,
111
,
07A501
.
7.
Banerjee
,
K.
,
Li
,
H.
, &
Srivastava
,
N.
(
2008
).
Current status and future perspectives of carbon nanotube interconnects
.
Paper presented at the 8th IEEE conference on nanotechnology
.
8.
Golgir
,
H. R.
,
Faez
,
R.
,
Pazoki
,
M.
,
Karamitaheri
,
H.
, &
Sarvari
,
R.
(
2011
).
Investigation of quantum conductance in semiconductor single-wall carbon nanotubes: Effect of strain and impurity
.
Journal of Applied Physics
,
110
,
064320
.
9.
Plombon
,
J.
,
O’Brien
,
K. P.
,
Gstrein
,
F.
,
Dubin
,
V. M.
, &
Jiao
,
Y.
(
2007
).
High-frequency electrical properties of individual and bundled carbon nanotubes
.
Applied Physics Letters
,
90
,
063106
.
10.
Bakhoum
,
E. G.
, &
Cheng
,
M. H.
(
2009
).
Electrophoretic coating of carbon nanotubes for high energy-density capacitor applications
.
Journal of Applied Physics
,
105
,
104314
.
11.
Boccaccini
,
A. R.
,
Cho
,
J.
,
Roether
,
J. A.
,
Thomas
,
B. J.
,
Jane
Minay
, E., &
Shaffer
,
M. S.
(
2006
).
Electrophoretic deposition of carbon nanotubes
.
Carbon
,
44
,
3149
3160
.
12.
Advani
,
S. G.
(
2007
). Processing and properties of nanocomposites:
World Scientific
.
13.
Koh
,
A. T.
,
Chen
,
T.
,
Pan
,
L.
,
Sun
,
Z.
, &
Chua
,
D. H.
(
2013
).
Effective hybrid graphene/carbon nanotubes field emitters by electrophoretic deposition
.
Journal of Applied Physics
,
113
,
174909
.
14.
Zhang
,
N.
,
Xie
,
J.
,
Guers
,
M.
, &
Varadan
,
V. K.
(
2003
).
Chemical bonding of multiwalled carbon nanotubes to SU-8 via ultrasonic irradiation
.
Smart materials and structures
,
12
,
260
.
15.
Behler
,
K.
,
Osswald
,
S.
,
Ye
,
H.
,
Dimovski
,
S.
, &
Gogotsi
,
Y.
(
2006
).
Effect of thermal treatment on the structure of multi-walled carbon nanotubes
.
Journal of Nanoparticle Research
,
8
,
615
625
.
16.
Olevik
,
D.
,
Soldatov
,
A.
,
Dossot
,
M.
,
Vigolo
,
B.
,
Humbert
,
B.
, &
McRae
,
E.
(
2008
).
Stability of carbon nanotubes to laser irradiation probed by Raman spectroscopy
.
physica status solidi (b)
,
245
,
2212
2215
.
17.
Rabiee Golgir
,
H.
,
Gao
,
Y.
,
Zhou
,
Y. S.
,
Fan
,
L.
,
Thirugnanam
,
P.
,
Keramatnejad
,
K.
, …
Lu
,
Y. F.
(
2014
).
Low-Temperature Growth of Crystalline Gallium Nitride Films Using Vibrational Excitation of Ammonia Molecules in Laser-Assisted Metalorganic Chemical Vapor Deposition
.
Crystal Growth & Design
,
14
,
6248
6253
.
18.
Nakamiya
,
T.
,
Ueda
,
T.
,
Ikegami
,
T.
,
Mitsugi
,
F.
,
Ebihara
,
K.
,
Sonoda
,
Y.
,
Tsuda
,
R.
(
2009
).
Effect of a pulsed Nd: YAG laser irradiation on multi-walled carbon nanotubes film
.
Thin Solid Films
,
517
,
3854
3858
.
19.
del Pino
,
Á. P.
,
György
,
E.
,
Cabana
,
L.
,
Ballesteros
,
B.
, &
Tobias
,
G.
(
2014
).
Ultraviolet pulsed laser irradiation of multi-walled carbon nanotubes in nitrogen atmosphere
.
Journal of Applied Physics
,
115
,
093501
.
20.
Sarkar
,
P.
, &
Nicholson
,
P. S.
(
1996
).
Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics
.
Journal of the American Ceramic Society
,
79
,
1987
2002
.
21.
Ye
,
H.
,
Wang
,
X.
,
Lin
,
W.
,
Wong
,
C.
, &
Zhang
,
Z.
(
2012
).
Infrared absorption coefficients of vertically aligned carbon nanotube films
.
Applied Physics Letters
,
101
,
141909
.
22.
Davis
,
J. R.
(
2001
). Copper and copper alloys:
ASM international
.
23.
Li
,
H.
,
Khatami
,
Y.
,
Sarkar
,
D.
,
Kang
,
J.
,
Xu
,
C.
,
Liu
,
W.
, &
Banerjee
,
K.
(
2014
).
Carbon Integrated Electronics
.
Intelligent Integrated Systems: Devices, Technologies, and Architectures
,
217
.
24.
Mialichi
,
J.
,
Brasil
,
M.
,
Iikawa
,
F.
,
Verissimo
,
C.
, &
Moshkalev
,
S.
(
2013
).
Laser irradiation of carbon nanotube films: Effects and heat dissipation probed by Raman spectroscopy
.
Journal of Applied Physics
,
114S
,
024904
.
This content is only available via PDF.
You do not currently have access to this content.