Graphene is a promising material for many potential applications, owing to its extraordinary properties. Numerous synthesizing approaches have been developed to realize the promising applications of graphene. However, there is lack of a comprehensive way, which combines the following features, i.e. large-area growth, patterned graphene and fast growth at the same time. Here, we provide an engineering approach to both large-area and patterned graphene at a high rate. The high power and continuous-wave lasers were employed to irradiate solid carbon source coated on nickel surface. The rate of graphene production by laser irradiation exceeds 28.8 cm2/min and the solid carbon source is less hazardous compared to typical gaseous carbon sources used in chemical vapor deposition (CVD). The influence of laser process on graphene fabrication was investigated systematically. Raman analyses, optical images and scanning electron microscopy (SEM) results show that the quality of graphene strongly depends on the laser process parameters, including laser power density and scanning rate. Adjusting the parameters to input the appropriate heat, so that the high quality graphene can be obtained in an optimal condition. The influence of carbon source on graphene growth was also investigated. Ultimately, the penetration and precipitation mechanism of carbon into Ni substrate during the fabrication process were also discussed. This approach may reach the scale large enough for practical applications.

1.
Geim
,
A.K.
&
Novoselov
,
K.S.
(
2007
)
The rise of graphene
,
Nature Materials
6
,
183
191
.
2.
Novoselov
,
K.S.
,
Fal’Ko
,
V.I.
,
Colombo
,
L.
,
Schwab
,
M.G.
&
Kim
,
K.
(
2012
)
A roadmap for graphene
,
Nature
490
,
192
200
.
3.
Soldano
,
C.
,
Mahmood
,
A.
&
Dujardin
,
E.
(
2010
)
Production, properties and potential of graphene
,
Carbon
48
,
2127
2150
.
4.
Kim
,
K.S.
,
Zhao
,
Y.
,
Jang
,
H.
,
Lee
,
S.Y.
,
Lee
,
Y.S.
,
Kim
,
J.M.
,
Kim
,
K.S.
,
Ahn
J.
,
Kim
,
P.
,
Choi
,
J.
&
Hong
,
B.H.
(
2009
)
Large-scale pattern growth of graphene films for stretchable transpatent electrodes
,
Nature
457
,
706
710
.
5.
Novoselov
,
K.S.
,
Jiang
,
D.
,
Schedin
,
F.
,
Booth
,
T.J.
,
Khotkevich
,
V.V.
,
Morozov
,
S.V.
, &
Geim
,
A.K.
(
2005
)
Two-dimensional atomic crystals
,
Proceedings of the National Academy of Sciences of the United States of America
102
,
10451
10453
.
6.
Li
,
X.
,
Cai
,
W.
,
An
,
J.
,
Kim
,
S.
,
Nah
,
J.
,
Yang
,
D.
&
Ruoff
,
R.S.
(
2009
)
Large-area synthesis of high-quality and uniform graphene films on copper foils
,
Science
,
324
(
5932
),
1312
1314
.
7.
Eda
G.
,
Fanchini
,
G.
&
Chhowalla
,
M.
(
2008
)
Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material
,
Nature Nanotechnology
3
,
270
274
.
8.
Qian
,
M.
,
Zhou
,
Y.S.
,
Gao
,
Y.
,
Park
,
J.B.
,
Feng
,
T.
,
Huang
,
S.M.
&
Lu
,
Y.F.
(
2011
)
Formation of graphene sheets through laser exfoliation of highly ordered pyrolytic graphite
,
Applied Physics Letters
98
,
173108
.
9.
Lee
,
S.
,
Toney
,
M.F.
,
Ko
,
W.
,
Randel
,
J.C.
,
Jung
,
H.J.
,
Munakata
,
K.
&
Salleo
,
A.
(
2010
)
Laser-synthesized epitaxial graphene
,
ACS nano
4
,
7524
7530
.
10.
Park
,
J.B.
,
Xiong
,
W.
,
Gao
,
Y.
,
Qian
,
M.
,
Xie
,
Z.Q.
,
Mitchell
,
M.
&
Lu
,
Y.F.
(
2011
)
Fast growth of graphene patterns by laser direct writing
,
Applied Physics Letters
98
,
123109
1
-3.
11.
Zhou
,
Y.
,
Bao
,
Q.
,
Varghese
,
B.
,
Tang
,
L.A.L.
,
Tan
,
C.K.
,
Sow
,
C.H.
&
Loh
,
K.P.
(
2010
)
Microstructuring of graphene oxide nanosheets using direct laser writing
,
Advanced Materials
22
,
67
71
.
12.
Kumar
P.
,
Panchakarla
L. S.
&
Rao
C. N. R.
(
2011
)
Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons
,
Nanoscale
3
,
2127
2129
.
13.
Xiong
,
W.
,
Zhou
,
Y. S.
,
Jiang
,
L.J.
,
Sarkar
,
A.
,
Mahjouri-Samani
,
M.
,
Xie
,
Z.Q.
&
Lu
,
Y.F.
(
2013
)
Single - Step Formation of Graphene on Dielectric Surfaces
,
Advanced Materials
25
,
630
634
.
14.
Ferrari
,
A.C.
,
Meyer
,
J.C.
,
Scardaci
,
V.
,
Casiraghi
,
C.
,
Lazzeri
,
M.
,
Mauri
,
F.
&
Geim
,
A.K.
(
2006
)
Raman spectrum of graphene and graphene layers
,
Physical review letters
97
,
187401
.
15.
Chae
,
S.J.
,
Güneş
,
F.
,
Kim
,
K.K.
,
Kim
,
E.S.
,
Han
,
G.H.
,
Kim
,
S.M.
&
Lee
,
Y.H.
(
2009
)
Synthesis of Large - Area Graphene Layers on Poly - Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation
,
Advanced Materials
21
,
2328
2333
.
16.
Li
,
X.
,
Cai
,
W.
,
Colombo
,
L.
, &
Ruoff
,
R. S.
(
2009
)
Evolution of graphene growth on Ni and Cu by carbon isotope labeling
,
Nano letters
9
,
4268
4272
.
17.
Yu
,
Q.
,
Lian
,
J.
,
Siriponglert
,
S.
,
Li
,
H.
,
Chen
,
Y. P.
&
Pei
,
S. S.
(
2008
)
Graphene segregated on Ni surfaces and transferred to insulators
,
Applied Physics Letters
93
,
113103
.
This content is only available via PDF.
You do not currently have access to this content.