A strategy for the integration of rolled-up micro scaled sensor devices on polymer substrates using laser micromachining and laser welding was developed and investigated. Using inexpensive polycarbonate substrates, this strategy thereby focuses on the utilization of such sensor elements in low cost yet fully integrated point-of-care Lab-on-a-Chip systems. In contrast to a previously developed MEMS-based “wet” integration method using a large number of photolithography steps involving the usage of organic solvents [1], the here presented “dry” integration method needs first of all less processing steps. Furthermore it eliminates the direct contact of the inner tube walls with the utilized solvents during the previously developed integration process. This leads to the possibility of applying a broad range of bio-functionalization on the surface of the nanomembranes that would be destroyed by the “wet” integration method.

1.
Harazim
S.M.
,
Bolanos Quinones
V.A.
,
Kiravittaya
S.
,
Sanchez
S.
&
Schmidt
O.G.
(
2012
)
Lab-in-a-tube: on-chip integration of glass optofluidic ring resonators for label-free sensing applications
,
Lab Chip
12
,
12 2649
2655
2.
Harazim
S.M.
,
Xi
W.
,
Schmidt
C. K.
,
Sanchez
S.
&
Schmidt
O.G.
(
2012
)
Fabrication and applications of large arrays of multifunctional rolled-up SiO/SiO2 microtubes
,
J. Mater. Chem.
22
,
2878
2884
.
3.
Smith
E.J.
,
Xi
W.
,
Makarov
D.
,
Mönch
I.
,
Harazim
S. M.
,
Bolaños Quiñones
V.A.
,
Schmidt
C. K.
,
Mei
Y.
,
Sanchez
S.
&
Schmidt
O. G.
(
2012
)
Lab-in-a-tube: ultracompact components for on-chip capture and detection of individual micro-/nanoorganisms
,
Lab Chip
12
,
12
1917
1931
4.
Schumacher
S.
,
Nestler
J.
,
Otto
T.
,
Wegener
M.
,
Ehrentreich-Förster
E.
,
Michel
D.
,
Wunderlich
K.
,
Palzer
S.
,
Sohn
K.
,
Weber
A.
,
Burgard
M.
,
Grzesiak
A.
,
Teichert
A.
,
Brandenburg
A.
,
Koger
B.
,
Albers
J.
,
Nebling
E
&
Bier
F.
(
2012
)
Highly-integrated lab-on-chip system for point-of-care multiparameter analysis
,
Lab Chip
12
,
3
464
473
5.
Enderlein
T.
,
Helke
C.
,
Hiller
K.
,
Schüller
M.
,
Geidel
S.
,
Nestler
J.
,
Otto
T.
,
Gessner
T.
(
2013
)
Picosecond Laser Micromachining in the context of MEMS/NEMS applications
, in
Proceedings of the Smart System Integration (SSI
),
Amsterdam, Netherlands
6.
Enderlein
T.
,
Nestler
J.
,
Otto
T.
,
Gessner
T.
(
2014
)
Laser Micromachining of brittle and fragile functional Materials
, in
Proceedings of the Smart Systems Integration (SSI
),
Wien, Austria
7.
Klimt
,
B.
Picosecond lasers: the power of cold ablation
,
Optics & Laser Europe
,
2009
8.
Enderlein
T.
,
Baum
M.
,
Nestler
J.
,
Otto
T.
,
Besser
J.
,
Wiemer
M.
,
John
B.
,
Hänel
J.
,
Gessner
T.
(
2012
)
Laser Micromachining and micro hot embossing for highly integrated Lab-on-Chip Systems
, in
Proceedings of the Smart System Integration (SSI
),
Zürich, Switzerland
9.
Baudach
S.
,
Bonse
J.
,
Krüger
J.
,
Kautek
W.
(
2000
)
Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate in Applied Surface Science
154–155
,
555
560
10.
Raciukaitis
G.
,
Gedvilas
M.
(
2005
)
Processing of polymers by UV picoseconds Lasers
,
Proceedings of the International Congress on Applications of Lasers & Electro-Optics (ICALEO
),
Miami, FL, USA
, Paper #M403
11.
Klein
R.
(
2011
)
Laser Welding of Plastics
,
Wiley-VCH
,
260
pp
12.
Mei
Y. F.
,
Huang
G. S.
,
Solovev
A. A.
,
Bermudez Urena
E.
,
Mönch
I.
,
Ding
F.
,
Reindl
T.
,
Fu
R. K. Y.
,
Chu
P. K.
&
Schmidt
O. G.
(
2008
)
Versatile Approach for Integrative and Functionalized Tubes by Strain Engineering of Nanomembranes on Polymers
,
Adv. Mater.
20
,
4085
4090
.
13.
Boglea
A.
,
Olowinsky
A.
&
Gillner
A.
(
2010
)
Extending the Limits of Laser Polymer Welding using Advanced Irradiation strategies
,
JLMN
, Vol.
5
, No.
2
,
138
144
This content is only available via PDF.
You do not currently have access to this content.