Laser deep penetration welding processes are highly dynamic. Due to a multitude of influences like the varying laser power and intensity or temperature dependent absorption of the laser energy in the material, process oscillations are produced. The keyhole radius and the pressure inside the keyhole oscillate at high frequencies. These instabilities are assumed to support the unwanted process pore formation during welding. In this paper the influence of different spatial laser intensity distributions on the process dynamics and the resulting pore formation is theoretically and experimentally investigated. Optical and acoustic measurements have been taken during laser welding. A Fourier transformation of the time signals calculates frequency spectrums of the emissions. Variation of process parameters like welding velocity from 1 m/min to 6 m/min or laser power from 3 kW to 4 kW have a minor influence on the frequency spectrum while different spatial laser intensity distributions significantly affect the keyhole oscillation frequencies. The frequency spectrum shows higher values when changing the intensity profile from a Gaussian-like to a top hat profile. Analytical keyhole modelling shows similar tendencies. Smaller but more pores can be found in the weld seam produced by a top hat profile.

1.
Bley
,
H.
;
Weyand
,
L.
;
Luft
,
A.
(
2007
)
An Alternative Approach for the Cost-efficient Laser Welding of Zinc-coated Sheet Metal
, in
CIRP Annals - Manufacturing Technology
56
(
1
),
17
20
.
2.
Geiger
,
M.
;
Leitz
,
K.H.
;
Koch
,
H.
;
Otto
,
A.
(
2009
)
A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets
,
Production Engineering
, Vol.
3
, No.
2
,
127
136
.
3.
Khan
,
M.
;
Romoli
,
L.
;
Dini
,
G.
;
Fiaschi
,
M.
(
2011
)
A simplified energy-based model for laser welding of ferritic stainless steels in overlap configurations
, in
CIRP Annals, E
,
60
/
1/
2011
, P.
215
.
4.
Schmidt
,
M.
;
Otto
,
A.
;
Kägeler
,
C.
;
Geiger
,
M.
(
2008
)
Analysis of YAG Laser Lap-Welding of zinc coated steel sheets
, in
CIRP Annals, E
,
57
/
1
/
2008
, P.
213
.
5.
Ki
,
H.
;
Mohanty
,
P.
;
Mazumder
,
J.
(
2002
)
Modeling of laser keyhole welding: Part II. Simulation of keyhole evolution, velocity, temperature profile, and experimental verification
, in
Metallurgical and materials transactions
, Volume
33A
, June
2002
.
6.
Otto
,
A.
;
Koch
,
H.
;
Leitz
,
K.H.
,
Schmidt
,
M.
(
2011
)
Numerical simulations – A versatile approach for better understanding dynamics in laser material processing
, in
Physics Procedia
12
(
2011
)
11
20
, World of Photonics Congress, 2011, Munich, Germany.
7.
Kumar
,
N.
;
Dash
,
S.
;
Tyagi
,
A.
;
Raj
,
B.
(
2010
)
Keyhole depth instability in case of cw CO2 laser beam welding of mild steel
, in
Sadhana
Vol.
35
, Part 5, October 2010, pp.
609
618
.
8.
Kaplan
,
A. F. H.
(
2011
)
Influence of the beam profile formulation when modeling fiber-guided laser welding
. In:
Journal of Laser Applications
, Volume
23
, Number
4
.
9.
Märten
,
O.
;
Wolf
,
S.
;
Hänsel
,
K.
;
Schwede
,
H.
;
Kramer
,
R.
(
2010
)
Qualifizierung von Fokussier- und Abbildungssystemen für die industrielle Laserbearbeitung mit brillanten Strahlquellen im Multikilowattbereich. 7
.
Laser-Anwenderforum (LAF’10)
, ed.
F.
Vollertsen
,
D.
Reitemeyer
.
BIAS-Verlag
Bremen
, Bd.
40
. (in German)
10.
Klein
,
T
;
Vicanek
,
M.
;
Kroos
,
J
;
Decker
,
I.
;
Simon
,
G.
(
1994
)
Oscillations of the keyhole in penetration laser beam welding
,
J. Phys. D: Appl. Phys.
27
2023
2030
.
11.
Kägeler
,
C.
;
Schmidt
,
M.
(
2012
) Frequency-based analysis of weld pool dynamics and keyhole oscillations at laser beam welding of galvanized steel sheets. Laser Assisted Net Shape Engineering (LANE 2012),
Physics Procedia
39
, eds.:
M.
Schmidt
,
F.
Vollertsen
,
M.
Geiger
,
Elsevier B.V.
Amsterdam
(
2012
)
447
453
.
12.
Geiger
,
M.
;
Kägeler
,
C.
;
Schmidt
,
M.
(
2008
)
High-power laser welding of contaminated steel sheets
. In:
Proc. Eng. Res. Devel.
(2008)
2
:
235
240
.
13.
Hoffman
,
J.
;
Szymanski
,
Z.
;
Jakubowski
,
J.
;
Kolasa
,
A.
(
2002
)
Analysis of acoustic and optical signals used as a basis for controlling laser-welding processes
, in
Welding International
2002
16
(
1
)
18
25
.
14.
Abt
,
F.
;
Boley
,
M.
;
Weber
,
R.
;
Graf
,
T.
;
Popko
,
G.
;
Nau
,
S.
(
2011
)
Novel X-ray system for in-situ diagnostic of laser based processes – First experimental results
. in
Physics Procedia
12
761
770
, World of Photonics Congress, Munich, Germany.
15.
Shcheglov
,
P.
;
Gumenyuk
,
A.
;
Gornushkin
,
I.
;
Rethmeier
,
M.
(
2011
)
Experimental investigation of the laser-plume interaction during high power fiber laser welding
, in
Proceedings of the 30th International Congress on Applications of Lasers & Electro-Optics (ICALEO-2011
), 23-27 October,
Orlando, FL, USA
, Paper
1606
.
16.
Fabbro
,
R.
;
Slimani
S.
;
Coste
F.
;
Briand
F.
;
Dlubak
B.
;
Loisel
G.
(
2006
)
Analysis of basic processes inside the keyhole during deep penetration Nd:YAG cw laser welding
, in
Proceeding of the 25th International Congress on Applications of Lasers & Electro-Optics (ICALEO-2006) Laser Materials Processing Conference
, Paper
101
.
17.
Volpp
,
J.
;
Freimann
,
D.
(
2013
)
Indirect measurement of keyhole pressure oscillations during laser deep penetration welding
. In:
Proceeding of 32nd International Congress on Applications of Lasers and Electro-Optics (ICALEO-2013), LIA Congress Proceeding. Paper 1301, 334-340
.
18.
Berger
,
P.
;
Hügel
,
H.
;
Graf
,
T.
(
2011
) Understanding pore formation in laser beam welding. Lasers in manufacturing (LIM 2011),
Physics Procedia
12
, eds.:
M.
Schmidt
,
M.F.
Zaeh
,
T.
Graf
,
A.
Ostendorf
, Elsevier Amsterdam 241-247
.
19.
Volpp
,
J.
;
Vollertsen
,
F.
(
2014
)
Modeling keyhole oscillations during laser deep penetration welding at different spatial laser intensity distributions. (submitted for publication, 2014
)
This content is only available via PDF.
You do not currently have access to this content.