Direct fabrication of graphene patterns on silicon dioxide/silicon (SiO2/Si) substrates was achieved using a laser-induced chemical vapor deposition process. The graphene patterns were fabricated in a CH4/H2 environment. Irradiation on a nickel-coated SiO2/Si substrate using a 532 nm laser beam with a power of 5 W induced an instant local temperature rise which facilitated the dissociation of the precursor gases. A fast cooling process as laser retracted lead to a fast precipitation of carbon and growth of graphene on the laser scanning path. Dewetting and evaporation of nickel thin film during the graphene growth process was observed. Raman spectroscopy was performed to identify the graphene, which indicates high-quality mono-layer graphene was obtained in the center of laser scanning path and the layer numbers of the graphene increases from the center area to the outer edge area. Graphene patterns were left on SiO2/Si substrates with a post-growth nickel removing process, which demonstrates the ability of direct fabrication of graphene patterns on dielectric substrates. Energy dispersive x-ray diffraction spectroscopy was used to track the nickel trace, which indicates no nickel left under the graphene patterns after the post-growth nickel removing process. The development of the laser-induced chemical vapor deposition process provides a promising route for the rapid fabrication of graphene devices.

1.
Geim
,
A.K.
&
Novoselov
,
K.S.
(
2007
)
The rise of graphene
,
Nature Mater.
6
,
183
191
.
2.
Lee
,
C.
,
Wei
,
X.K.
,
Kysar
,
J.W.
&
Hone
,
J.
(
2008
)
Measurement of the elastic properties and intrinsic strength of monolayer graphene
,
Science
321
,
385
388
.
3.
Bunch
,
S.
,
Verbridge
,
S.S.
,
Alden
,
J.S.
,
Zande
,
A.M.
,
Parpia
,
J.M.
,
Craighead
,
H.G.
&
McEuen
,
P.L.
(
2008
)
Impermeable atomic membranes from graphene sheets
,
Nato Lett.
8
,
2458
2462
.
4.
Prasher
,
R.
, (
2010
)
Graphene spreads the heat
,
Science
328
,
185
186
.
5.
Bonaccorso
,
F.
,
Sun
,
Z.
,
Hasan
,
T.
&
Ferrari
,
A.C.
(
2010
)
Graphene photonics and optoelectronics
,
Nat. Photonics
4
,
611
622
.
6.
Novoselov
,
K.S.
,
Jiang
,
D.
,
Schedin
,
F.
,
Booth
,
T.J.
,
Khotkevich
,
V.V.
,
Morozov
,
S.V.
&
Geim
,
A.K.
(
2005
)
Two-dimensional atomic crystals
,
Proc. Natl, Acad. Sci
.
U.S.A
.
102
,
10451
10453
.
7.
Blake
,
P.
,
Brimicombe
,
P.D.
,
Nair
,
R.R.
,
Booth
,
T.J.
,
Jiang
,
D.
,
Schedin
,
F.
,
Ponomarenko
,
L.A.
,
Morozov
,
S.V.
,
Gleeson
,
H.F.
,
Hill
,
E.W.
,
Geim
,
A.K.
&
Novoselov
,
K.S.
(
2008
)
Graphene-based liquid crystal device
,
Nano Lett.
8
,
1704
1708
.
8.
Sutter
,
P.
(
2009
)
Epitaxial graphene: How silicon leaves the scene
,
Nature Mater.
8
,
171
172
.
9.
Aristov
,
V.Y.
,
Urbanik
,
G.
,
Kummer
,
K.
,
Vyalikh
,
D.V.
,
Molodtsova
,
O.V.
,
Preobrajenski
,
A.B.
,
Zakharov
,
A.A.
,
Hess
,
C.
,
Hanke
,
T.
,
Buchner
,
B.
,
Vobornik
,
I.
, Fujii,
J.
Panaccione
, G.,
Ossipyan
,
Y.A.
&
Knupfer
,
M.
(
2010
)
Graphene synthesis on c ubic SiC/Si wafers. Perspectives for mass production of graphene-based electronic devices
,
Nano Lett.
10
,
992
995
.
10.
Stankovich
,
S.
,
Dikin
,
D.A.
,
Piner
,
R.D.
,
Kohlhass
,
K.A.
,
Kleinhammes
,
A.
,
Jia
,
Y.
,
Wu
,
Y.
,
Nguyen
,
S.T.
&
Ruoff
,
R.S.
(
2007
)
Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
,
Carbon
45
,
1558
1565
.
11.
Li
,
X.
,
Cai
,
W.
,
An
,
J.
,
Kim
,
S.
,
Nah
,
J.
,
Yang
,
D.
,
Piner
,
R.
,
Velamakanni
,
A.
,
Jung
,
I.
,
Tutuc
,
E.
,
Banerjee
,
S.K.
,
Colombo
,
L.
&
Ruoff
,
R.R.
(
2009
)
Large-area synthesis of high-quality and uniform graphene films on copper foils
,
Science
324
,
1312
1314
.
12.
Kim
,
K.S.
,
Zhao
,
Y.
,
Jang
,
H.
,
Lee
,
S.Y.
,
Kim
,
J.M.
,
Kim
,
K.S.
,
Ahn
,
J.H.
,
Kim
,
P.
,
Choi
,
J.Y.
&
Hong
,
B.H.
(
2009
)
Large-scale pattern growth of graphene films for stretchable transparent electrodes
,
Nature
(London)
457
,
706
710
.
13.
Lee
,
Y.
,
Bae
,
S.
,
Jang
,
H.
,
Jang
,
S.
,
Zhu
,
S.E.
,
Sim
,
S.H.
,
Song
,
Y.I.
,
Hong
,
B.H.
&
Ahn
,
J.H.
(
2010
)
Wafer-scale synthesis and transfer of graphene films
,
Nano Lett.
10
,
490
493
.
14.
Bae
,
S.
,
Kim
,
H.
,
Lee
,
Y.
,
Xu
,
X.
,
Park
,
J.S.
,
Zheng
,
Y.
,
Balakrishnan
,
J.
,
Lei
,
T.
,
Kim
,
H.R.
,
Song
,
Y.I.
,
Kim
,
Y.J.
,
Kim
,
K.S.
,
Ozyilmaz
,
B.
,
Ahn
,
J.H.
,
Hong
,
B.H.
&
Iijima
,
S.
(
2010
)
Roll-to-roll production of 30-inch graphene films for transparent electrodes
,
Nat. Nanotechnol.
5
,
574
578
.
15.
Cong
C. X.
,
Yu
,
T.
,
Ni
,
Z. H.
,
Liu
,
L.
,
Chen
,
Z. X.
&
Huang
,
W.
(
2009
)
Fabrication of graphene nanodisk arrays using nanosphere lithography
,
J. Phys. Chem. C
113
,
6529
6532
.
16.
Allen
,
M. J.
,
Tung
,
V.C.
,
Gomez
,
L.
,
Xu
,
Z.
,
Chen
,
L.
,
Nelson
,
K.S.
,
Zhou
,
C.
,
Kaner
,
R.B.
&
Yang
,
Y.
(
2009
)
Soft transfer printing of chemically converted graphene
,
Adv. Mater.
21
,
2098
2102
.
17.
Zhou
,
Y.
,
Bao
,
Q.
,
Varghese
,
B.
,
Tang
,
L.
,
Khim
,
T.
,
Sow
,
C.
&
Loh
,
K.
(
2010
)
Microstructuring of grpahene oxide nanoshets using direct laser writing
,
Adv. Mater.
22
,
67
71
.
18.
Park
,
J.B.
,
Xiong
,
W.
,
Xie
,
Z.Q.
,
Gao
,
Y.
,
Qian
,
M.
,
Mitchell
,
M.
,
Mahiouri-Samani
,
M.
,
Zhou
,
Y.S.
,
Jiang
,
L.
&
Lu
,
Y. F.
(
2011
)
Transparent interconnectors formed by rapid single-step fabrication of graphene patterns
,
Appl. Phys. Lett.
99
,
053103
.
19.
Park
,
J.B.
,
Xiong
,
W.
,
Gao
,
Y.
,
Qian
,
M.
,
Xie
,
Z.Q.
,
Mitchell
,
M.
,
Zhou
,
Y.S.
,
Han
,
G.H.
,
Jiang
,
L.
&
Lu
,
Y. F.
(
2011
)
Fast growth of graphene patterns by laser direct writing
,
Appl. Phys. Lett.
98
,
123109
.
20.
Lin
,
Y.C.
,
Jin
,
C.
,
Lee
,
J.C.
,
Jen
,
S.F.
,
Suenaga
,
K.
&
Chiu
,
P.W.
(
2011
)
Clean transfer of graphene for isolation and suspension
,
ACS Nano
5
,
2362
2368
.
21.
Brown
,
S.D.M.
,
Jorio
,
A.
,
Dresselhaus
,
M.S.
&
Dresselhaus
,
G.
(
2001
) “
Observations of the D-band feature in the Raman spectra of carbon nanotube
,”
Phys. Rev. B
,
64
,
073403
.
22.
Reina
,
A.
,
Jia
,
X.T.
,
Ho
,
J.
,
Nezich
,
D.
,
Son
,
H.B.
,
Bulovic
,
V.
,
Dresselhaus
,
M.S.
&
Kong
,
J.
(
2009
)
Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition
,
Nano Lett.
9
,
30
35
.
23.
Yamane
,
T.
,
Nagai
,
N.
,
Katayama
,
S.
&
Todoki
,
M.
(
2002
)
Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method
,
J. Appl. Phys.
91
,
9772
9776
.
This content is only available via PDF.
You do not currently have access to this content.