Rapid Prototyping based on Laser Cladding is an Additive Manufacturing (AM) technique that can be applied to any material which can be melted. It can be found under different names and acronyms: Direct Laser Deposition (DLD), Laser Metal Deposition (LMD), Laser Engineering Net Shaping (LENS), etc. Despite the different names, the basics of these methods are the same: a scanning laser beam creates a molten pool, in which a precursor material is fed; by the relative movement between the substrate and the laser, a cladding track is generated; and by the overlapping of cladding tracks is possible to manufacture functional 3D parts, layer by layer. Apart from that, titanium and its alloys present excellent properties like corrosion resistance, biocompatibility and high strength-to-weight ratio. They are widely used by several industries, in particular for biomedical, chemical, aircraft and marine applications. However, the machinability of titanium is considered poor and the loss of material produced by conventional manufacturing methods is highly costly. Rapid Prototyping Based on Laser Cladding is a solution to manufacture functional parts of titanium and avoid these obstacles. In this research work, Rapid Prototyping based on Laser Cladding is applied to obtain sub-milimetric simple titanium parts. A fiber laser delivering a maximum power of 200 W is used to process the precursor material selected: commercial pure titanium (cp-Ti) powder. The parts generated are analyzed by different characterization methods to study the microstructure, composition and properties.

1.
Toyserkani
,
E.
,
Khajepour
,
A.
,
Corbin
,
S.
(
2004
)
Laser Cladding
,
CRC Press LLC
,
280
pp.
2.
Lusquiños
,
F.
,
Comesaña
,
R.
,
Riveiro
,
A.
,
Quintero
,
F.
,
Pou
J.
(
2009
)
Fibre laser micro-cladding of Co-based alloys on stainless steel
,
Surface & Coatings Technology
,
208
,
1933
1940
.
3.
Clark
,
D.
,
Whittaker
,
M.
,
Bache
,
M. R.
(
2011
)
Microstructural Characterization of a Prototype Titanium Alloy Structure Processed via Direct Laser Deposition (DLD
),
Metallurgical and Materials Transactions B
,
43B
,
388
396
.
4.
Naveed Ahsan
,
M.
,
Paul
,
C.P.
,
Kukreja
,
L.M.
,
Pinerton
,
A.J.
(
2011
)
Porous structures fabrication by continuous and pulsed laser metal deposition for biomedical applications; modelling and experimental investigation
,
Journal of Materials Processing Technology
,
211
,
602
609
.
5.
Wang
,
L.
,
Felicelli
,
S.D.
,
Craig
,
J.E.
(
2009
)
Experimental and Numerical Study of the LENS Rapid Fabrication Process
,
Journal of Manufacturing Science and Engineering
,
131
, 041019,
1
8
.
6.
Costa
,
L.
,
Vilar
,
R.
(
2009
)
Laser powder deposition, Rapid Prototyping Journal
,
15
(
4
),
264
279
.
7.
Dinda
,
G.P.
,
Dasgupta
,
A.K.
,
Mazumder
,
J.
(
2009
)
Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and termal stability
.
Materials Science and Engineering A
,
5009
,
98
104
.
8.
España
,
F.A.
,
Krishna Balla
,
V.
,
Bose
,
S.
,
Bandyopadhyay
,
A.
(
2010
)
Design and fabrication of CoCrMo alloy based novel structures for load bearing implants using laser engineered net shaping
,
Materials Science and Enginering C
,
30
,
50
57
.
9.
Comesaña
,
R.
,
Lusquiños
,
F.
,
del Val
,
J.
,
LópezÁlvarez
,
M.
,
Quintero
,
F.
,
Riveiro
,
A.
,
Boutinguiza
,
M.
,
de Carlos
,
A.
,
Jones
,
J.R.
,
Hill
,
R.G.
,
Pou
,
J.
(
2011
)
Three-dimensional bioactive glass implants fabricated by rapid prototyping based on CO2 laser cladding
,
Acta Biomaterialia
,
7
,
3476
3487
.
10.
Comesaña
,
R.
,
Lusquiños
,
F.
,
del Val
,
J.
,
Malot
,
T.
,
López-Álvarez
,
M.
,
Riveiro
,
A.
,
Quintero
,
F.
,
Boutinguiza
,
M.
,
Aubry
,
P.
,
de Carlos
,
A.
,
Pou
,
J.
(
2011
)
Calcium phosphate grafts produced by rapid prototyping based on laser cladding
,
Journal of the European Ceramic Society
,
31
,
29
41
.
11.
Leyens
,
C.
,
Manfred
,
P.
(
2003
)
Titanium and Titanium Alloys: Fundamentals and Applications
,
Wiley-VCH Verlag
,
513
pp.
12.
Geetha
,
M.
,
Singh
,
A.K.
,
Asokamani
,
R.
,
Gogia
,
A.K.
(
2009
)
Ti based biomaterials, the ultimate choice for orthopaedic implants – A review
,
Progress in Materials Science
,
54
,
397
425
.
13.
Ezugwu
,
E.O.
,
Wang
,
Z.M.
(
1997
)
Titanium alloys and their machinability - a review
,
Journal of Materials Processing Technology
,
68
,
262
274
.
14.
Dutta
,
B.
,
Froes
,
F.H.
(
2014
)
Additive Manufacturing of Titanium Alloys
,
Advanced Materials and Processes
,
172
(
2
),
18
23
.
15.
Kobryn
,
P.A.
,
Moore
,
E.H.
,
Semiatin
,
S.L.
(
2000
)
The effect of laser power and traverse speed on microstructure, porosity, and build height in laser-deposited Ti-6Al-4V
,
Scripta Materialia
,
43
,
299
305
.
16.
Dinda
,
G.P.
,
Song
,
L.
,
Mazumder
,
J.
(
2008
)
Fabrication of Ti-6Al-4V Scaffolds by Direct Metal Deposition
,
Metallurgical and Materials Transactions A
,
39
(
12
),
2914
2922
.
17.
Gharbi
,
M.
,
Peyre
,
P.
,
Gorny
,
C.
,
Carin
,
M.
,
Morville
,
S.
,
Le Masson
,
P.
,
Carron
,
D.
,
Fabbro
,
R.
(
2014
)
Influence of a pulsed laser regime on surface finish induced by the direct metal deposition process on a Ti64 alloy
,
Journal of Materials Processing Technology
,
2014
(
2
),
485
495
.
18.
Meacock
,
C.
,
Vilar
,
R.
(
2008
)
Laser powder microdeposition of CP2 Titanium, Materials & Design
,
29
,
353
361
.
19.
Arias-González
,
F.
,
del Val
,
J.
,
Comesaña
,
R.
,
Lusquiños
,
F.
,
Quintero
,
F.
,
Riveiro
,
A.
,
Boutinguiza
,
M.
,
Pou
,
J.
(
2013
)
Processing of pure titanium by Rapid Prototyping Based on Laser Cladding
,
Proceedings of SPIE – The International Society for Optical Engineering
,
8785
,
878546
.
This content is only available via PDF.
You do not currently have access to this content.