Large-scale atomistic modeling is conducted to explore a relatively cold consolidation process: nanoparticles compressed by a stress wave from a sacrificial layer that is ablated by a picosecond laser. The temperature, stress, atomic configuration, and crystallinity are studied in detail to understand the structural behaviors under extreme compression. Study of the temperature and structure evolution reveals that compression and reconstruction are cold processes. Despite the destruction-reconstruction process, the material temperature is below its melting point. The stress wave consolidation leads to a final nanocrystalline structure. An orientation-radial distribution function (ODF) is designed to study the status of the nanocrystalline structure in detail. Compared with the radial distribution function, the ODF provides a 2D picture of the material structure, and uncovers details of material twisting and destruction. Smaller nanoparticles are easier to consolidate and reconstruct, and the final structure is more like amorphous and structural defects are observed. The center part of the particle retains its original crystalline structure while cold-consolidation primarily occurs in the particle-particle contact region. The number of reconstructed atoms is higher when the particle size is smaller, and strong structure twisting in space is observed.

1.
T.
Takiya
,
I.
Umezu
,
M.
Yaga
, and
M.
Han
,
Journal of Physics: Conference Series
59
,
445
(
2007
).
2.
S.
Amoruso
,
G.
Ausanio
,
R.
Bruzzese
,
M.
Vitiello
, and
X.
Wang
,
Physical Review B
71
,
033406
(
2005
).
3.
L. V.
Zhigilei
,
E.
Leveugle
,
B. J.
Garrison
,
Y. G.
Yingling
, and
M. I.
Zeifman
,
Chemical Reviews
103
,
321
(
2003
).
4.
A.
Plech
,
V.
Kotaidis
,
M.
Lorenc
, and
J.
Boneberg
,
Nature Physics
2
,
44
(
2005
).
5.
S.
Gacek
and
X.
Wang
,
Applied Physics A
94
,
675
(
2008
).
6.
S.
Gacek
and
X.
Wang
,
Journal of Applied Physics
104
,
126101
(
2008
).
7.
S.
Gacek
and
X.
Wang
,
Physics Letters A
373
,
3342
(
2009
).
8.
C.
Li
,
J.
Zhang
, and
X.
Wang
,
Applied Physics A
112
,
677
(
2013
).
9.
W.
Zhang
,
I. C.
Noyan
, and
Y. L.
Yao
,
Journal of Manufacturing Science and Engineering
126
,
10
(
2004
).
10.
W.
Zhang
and
Y. L.
Yao
,
Journal of Manufacturing Science and Engineering
124
,
369
(
2002
).
11.
P.
Molian
,
R.
Molian
, and
R.
Nair
,
Applied Surface Science
255
,
3859
(
2009
).
12.
P.
Peyre
,
X.
Scherpereel
,
L.
Berthe
,
C.
Carboni
,
R.
Fabbro
,
G.
Béranger
, and
C.
Lemaitre
,
Materials Science and Engineering: A
280
,
294
(
2000
).
13.
D.
Lin
,
C.
Ye
,
Y.
Liao
,
S.
Suslov
,
R.
Liu
, and
G. J.
Cheng
,
Journal of Applied Physics
113
,
133509
(
2013
).
14.
H. K.
Amarchinta
,
R. V.
Grandhi
,
K.
Langer
, and
D. S.
Stargel
,
Modelling and Simulation in Materials Science and Engineering
17
,
015010
(
2009
).
15.
J. H.
Kim
,
Y. J.
Kim
, and
J. S.
Kim
,
Journal of Mechanical Science and Technology
27
,
2025
(
2013
).
16.
W.
Braisted
and
R.
Brockman
,
International Journal of Fatigue
21
,
719
(
1999
).
17.
T.
Dunbar
,
B.
Maynard
,
D. A.
Thomas
,
M. D. M.
Peri
,
I.
Varghese
, and
C.
Cetinkaya
,
Journal of Adhesion Science and Technology
21
,
67
(
2007
).
18.
X. K.
Shen
,
J.
Sun
,
H.
Ling
, and
Y. F.
Lu
,
Applied Physics Letters
91
,
081501
(
2007
).
19.
X. K.
Shen
,
J.
Sun
,
H.
Ling
, and
Y. F.
Lu
,
Journal of Applied Physics
102
,
093301
(
2007
).
20.
L. B.
Guo
,
C. M.
Li
,
W.
Hu
,
Y. S.
Zhou
,
B. Y.
Zhang
,
Z. X.
Cai
,
X. Y.
Zeng
, and
Y. F.
Lu
,
Applied Physics Letters
98
,
131501
(
2011
).
21.
R.
Nair
,
W.
Jiang
, and
P.
Molian
,
Journal of Manufacturing Science and Engineering
126
,
637
(
2004
).
22.
S.
Plimpton
,
Journal of Computational Physics
117
,
1
(
1995
).
23.
X.
Wang
and
Y.
Lu
,
Journal of Applied Physics
98
,
114304
(
2005
).
24.
X.
Feng
and
X.
Wang
,
Applied Surface Science
254
,
4201
(
2008
).
25.
X.
Wang
,
Journal of Physics D: Applied Physics
38
,
1805
(
2005
).
This content is only available via PDF.
You do not currently have access to this content.