Attempts on the selective promotion of diamond growth were investigated by deploying laser-assisted vibrational excitation of reactant molecules, which deposits energy selectively into specific molecules and activate the molecules towards the selected reaction pathways. Laser-assisted combustion chemical vapor deposition (CVD) of diamond was studied using a wavelength-tunable CO2 laser. The CH2-wagging mode (υ7, at 949.3 cm-1) of ethylene precursor molecules is strongly infrared active and perfectly matches the emission line of the CO2 laser at 10.532 µm. On- and off-resonance excitations of molecules were performed via tuning the incident laser wavelengths centered at 10.532 µm. With the same amount of laser power absorbed, the on-resonance vibrational excitation allowed a largest fraction of the absorbed laser energy coupled directly into C2H4 molecules whereas energy coupling under off-resonance excitations is less efficient in influencing the combustion process. The diamond deposition rate was enhanced by a factor of 5.7 accompanied with an improvement of diamond quality index under the on-resonance excitation at 10.532 µm. The flame shape variation indicate that the resonant vibrational excitation is an efficient route coupling energy into the reactant molecules to surmount the chemical reaction barrier and steering the combustion process to favor the diamond formation. Mass spectrometry was performed to study the chemical species in the flame, which suggests that hydrocarbons-related species were selectively enhanced while etchant species were suppressed with resonant laser excitations.

1.
Gracio
,
J.J.
,
Fan
,
Q.H.
, &
Madaleno
,
J.C.
(
2010
)
Diamond growth by chemical vapor deposition
,
J. Phys. D: Appl. Phys.
43
,
374017
.
2.
Haubner
,
R.
&
Lux
,
B.
(
1993
)
Diamond growth by hot-filament chemical vapor deposition: state of the art
,
Diamond Relat. Mater.
2
,
1277
1294
.
3.
McCauley
,
T.S.
&
Vohra
,
Y.K.
(
1995
)
Homoepitaxial diamond film deposition on a brilliant cut diamond anvil
,
Appl. Phys. Lett.
66
,
1486
1488
.
4.
Asmussen
,
J.
,
Grotjohn
,
T.A.
,
Schuelke
,
T.
,
Becker
,
M.F.
&
Yaran
,
M. K.
(
2008
)
Multi substrate microwave plasma-assisted chemical vapor deposition single crystal diamond synthesis
,
Appl. Phys. Lett.
93
,
031502
.
5.
Zou
,
Y.S.
,
Yang
,
Y.
Chong
,
Y.M.
,
Ye
,
Q.
,
He
,
B.
,
Yao
,
Z. Q.
,
Zhang
,
W.J.
,
Lee
,
S.T.
,
Cai
,
Y.
&
Chu
,
H.S.
(
2008
)
Chemical vapor deposition of diamond films on patterned GaN substrate via a thin silicon nitride protective layer
,
Cryst. Growth Des.
8
,
1770
1773
.
6.
Crim
,
F.F.
(
2008
)
Chemical dynamics of vibrationally excited molecules: controlling reactions in gases and on surface
,
PNAS
105
,
12654
12661
.
7.
Crim
,
F.F.
(
2007
)
Make energy count
,
Science
316
,
1707
1708
.
8.
Zare
,
R.N.
(
1998
)
Laser control of chemical reactions
,
Science
279
,
1875
1879
.
9.
Yan
,
S.
,
Wu
,
Y.T.
,
Zhang
,
B.
,
Yue
X.F.
, &
Liu
,
K.
(
2007
)
Do vibrational excitations of CHD3 preferentially promote reactivity toward the chlorine atom
,
Science
316
,
1723
1726
.
10.
Killelea
,
D.R.
,
Campbell
,
V.L.
,
Shuman
,
N.S.
,
Utz
,
A.L.
(
2008
)
Bond-selective control of a heterogeneously catalyzed reaction
,
Science
319
,
790
793
.
11.
Rebello
,
J.H.D.
,
Straub
D.L.
&
Subramaniam
,
V.V.
(
1992
)
Diamond growth from a CO/CH4 mixture by laser excitation of CO: Laser excitation chemical vapor deposition
,
J. Appl. Phys.
72
,
1133
1136
.
12.
Plonjes
,
E.
,
Palm
,
P.
,
Viswanathan
,
G.B.
,
Subramaniam
,
V.V.
,
Admovich
,
I.V.
,
Lempert
,
W.R.
,
Fraser
H.L.
&
Rich
,
J.W.
(
2002
)
Synthesis of single-walled carbon nanotubes in vibrationally non-equilibrium carbon monoxide
,
Chem. Phys. Lett.
352
,
342
347
13.
Xie
,
Z.Q.
,
Zhou
,
Y.S.
,
He
,
X.N.
,
Gao
,
Y.
,
Park
,
J.
,
Ling
,
H.
,
Jiang
,
L.
&
Lu
,
Y.F.
(
2010
)
Fast growth of diamond crystals in open air by combustion synthesis with resonant laser energy coupling
,
Cryst. Growth Des.
10
,
1762
1766
.
14.
Smith
W.L.
&
Mills
,
I.M.
(
1964
)
Coriolis perturbations in the infrared spectrum of ethylene
,
J. Chem. Phys.
40
,
2095
2109
.
15.
He
,
X.N.
,
Shen
,
X.K.
,
Gebre
,
T.
,
Xie
,
Z.Q.
,
Jiang
L.
&
Lu
,
Y.F.
(
2010
)
Spectroscopic determination of rotational temperature in C2H4/C2H2/O2 flames for diamond growth with and without tunable CO2 laser excitation
,
Appl. Opt.
49
,
1555
1562
.
16.
McHale
,
J.L.
(
1999
) Molecular Spectroscopy,
Pearson Education
.
17.
Ferrari
A.C.
&
Roberson
,
B.
(
2004
)
Raman spectroscopy of amorphous nanostructured, diamond-like carbon, and nanodiamond
,
J. Phil. Trans. R. Soc. Lond. A
362
,
2477
2512
.
18.
Schwan
,
J.
,
Ulrich
,
S.
,
Batori
,
V.
,
Ehrhardt
H.
&
Silva
,
S. R. P.
(
1996
)
Raman spectroscopy on amorphous carbon films
,
J. Appl. Phys.
80
,
440
447
.
19.
Bak
,
G.W.
,
Fabisiak
,
K.
,
Klimek
,
L.
,
Kozanecki
M.
&
Staryga
,
E.
(
2008
)
Investigation of biaxial stresses in diamond films deposited on a silicon substrate by the HF CVD method
,
Opt. Mater.
30
,
770
773
.
20.
Hayhurst
,
A.N.
&
Kittelson
,
D.B.
(
1978
)
The positive and negative ions in oxy-acetylene flames
,
Combustion and Flame
,
31
,
37
51
.
21.
Uchida
,
U.
,
Kurita
,
T.
,
Ohkoshi
,
H.
,
Uematsu
K.
&
Saito
K.
, (
1991
)
Thermochemical etching effect of H2O vapor on CVD diamond
,
J. Crsty. Growth
,
114
,
565
568
.
22.
Lowe
,
A.G.
,
Hartlieb
,
A.T.
,
Brand
,
J.
,
Atakan
,
B.
&
Kohse-Hoinghaus
,
K.
(
1999
)
Diamond deposition in low-pressure acetylene: in situ temperature and species concentration measurement by laser diagnostics and molecular beam mass spectrometry
,
Combustion and Flame
,
118
,
37
50
.
23.
Matsui
,
Y.
,
Yuuki
,
A.
,
Sahara
,
M.
, &
Hirose
,
Y.
(
1989
)
Flame structure and diamond growth mechanism of acetylene torch
,
Japan J. Appl. Phys.
28
,
1718
1724
.
24.
Orden
,
A.V.
&
Saykally
,
R.J.
(
1998
)
Small carbon clusters: spectroscopy, structure, and energetics
,
Chem. Rev.
98
,
2313
2358
.
25.
Weltner
W.J.
&
Van-Zee
,
R.J.
(
1989
)
Carbon molecules, ions and clusters
,
Chem. Rev
,
89
,
1713
1747
.
This content is only available via PDF.
You do not currently have access to this content.