The first calcium phosphate based biomaterials were introduced in the market almost forty years ago and, due to the compositional resemblance with the mineral constituents of bones and teeth, they became extensively employed in biomedical applications involving bone defects repair. Nowadays, research on calcium phosphate biomaterials is focused on developing the potential of additional dimensional and morphological similarities to those biological structures. Thus, specific physiochemical properties of hydroxylapatite (HA), Ca10(PO4)6(OH)2, are considered to be influenced by its presence as nanometric particles with a platelet shape in bones and teeth. Moreover, the use of β-tricalcium phosphate (β-TCP), Ca3(PO4)2 in nanosize scale and low crystallinity has been reported to improve the bioactivity.

Among the different methods of nanoparticle production, laser ablation is a powerful technique to improve the dimensional and morphological characteristics of calcium phosphate biomaterials. Direct formation of nanoparticles in solutions, the absence of contamination, maximum particle collection efficiency, easiness of preparation, or low processing costs constitute some of the advantages of this technique. In this work, we report the results of nanoparticles obtained by laser ablation of calcium phosphate targets in liquid media. Different infrared laser sources, operating at wavelengths 1064, 1075 and 10600 nm and coupled to identical focal length focusing heads were employed to study the influence of processing conditions, such as pulse energy, operating frequency, or irradiance, on the properties of the produced nanoparticles. The morphology and the composition of these calcium phosphate nanoparticles were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and conventional and high resolution transmission electron microscopy (TEM, HRTEM).

1.
W.
Wang
,
D.
Shi
,
J.
Lian
,
G.
Liu
,
L.
Wang
and
R. C.
Ewing
.
Luminescent hydroxylapatite nanoparticles by surface functionalization
,
Appl. Phys. Lett.
89
,
183106
(
2006
).
2.
D.
Aronov
and
G.
Rosenman
.
Wettability patterning of hydroxyapatite nanobioceramics induced by surface potential modification
.
Appl. Phys. Lett
88
,
163906
(
2006
).
3.
H.H.K.
Xu
,
M.D.
Weir
,
L.
Sun
,
S.
Takagi
, and
L.C.
Chow
.
Effects of calcium phosphate nanoparticles on Ca-PO4 composite
.
J. Dent. Res.
86
(
4
),
378
(
2007
).
4.
O.
Adamopoulos
and
T.
Papadopoulos
.
Nanostructured bioceramics for maxillofacial applications
.
J. Mater Sci: Mater Med
18
,
1587
(
2007
).
5.
J. T. J.
Webster
,
C.
Ergun
,
R. H.
Doremus
,
R. W.
Siegel
and
R.
Bizios
.
Enhanced functions of osteoblasts on nanophase ceramics
.
Biomat.
21
,
1803
(
2000
).
6.
K.
Fujiharaa
,
M.
Kotakib
and
S.
Ramakrishna
.
Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers
.
Biomat.
26
,
4139
(
2005
).
7.
Bucholz
,
R.W.
Nonallograft osteoconductive bone graft substitutes Clinical Orthopaedics and Related Research
, (
395
), pp.
44
52
(
2002
).
8.
W.J.E.M.
Habraken
,
J.G.C.
Wolke
and
J.A.
Jansen
.
Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering
.
Ad. Drug Deliv. Rev.
59
,
234
(
2007
).
9.
T. J.
Brunner
,
M.
Bohner
,
C.
Dora
,
C.
Gerber
,
W. J.
Stark
.
Comparison of amorphous TCP nanoparticles to micron-sized α-TCP as starting materials for calcium phosphate cements
.
J. Biomed. Mat. Res. B: Appl. Biomat.
,
400
(
2007
).
10.
T. J.
Brunner
,
R. N.
Grass
,
M.
Bohner
and
W.J.
Stark
.
Effect of particle size, crystal phase and crystallinity on the reactivity of tricalcium phosphate cements for bone reconstruction
.
J. Mater. Chem.
17
,
4072
(
2007
).
11.
O. D.
Schneider
,
S.
Loher
,
T. J.
Brunner
,
L.
Uebersax
,
M.
Simonet
,
R. N.
Grass
,
H. P.
Merkle
, and
W. J.
Stark
.
Cotton wool-like nanocomposite biomaterials prepared by electrospinning: In vitro bioactivity and osteogenic differentiation of human mesenchymal stem cells
.
J. Biomed. Mat. Res. B: Appl. Biomat.
,
350
(
2007
).
12.
H.
Liu
,
H.
Yazici
,
C.
Ergun
,
T. J.
Webster
,
H.
Bermek
.
In Vitro Evaluation of the Ca/P Ratio Factor in Cytocompatibility of Nanoparticulate Calcium Phosphates for Bone Regeneration
.
Acta Biomaterialia
,
4
(
2008
)
13.
S.
Loher
S,
W.J.
Stark
,
M.
Maciejewski
,
A.
Baiker
,
S.E.
Pratsinis
,
D.
Reichardt
,
F.
Maspero
,
F.
Krumeich
and
D.
Gunther
.
Fluoro-apatite and calcium phosphate nanoparticles by flame synthesis
.
Chem Mater
17
,
36
(
2005
).
14.
M.
Boutinguiza
,
F.
Lusquiños
,
R.
Comesaña
,
A.
Riveiro
,
F.
Quintero
and
J.
Pou
.
Production of microscale particles from fish bone by gas flow assisted laser ablation
.
Appl. Surf. Sci.
254
,
1264
(
2007
).
15.
Boutinguiza
M
,
Lusquiños
F
,
Riveiro
A
,
Comesaña
R
,
Pou
J
:
Hydroxylapatite nanoparticles obtained by fiber laser-induced fracture
.
Appl Surf Sci
2009
,
255
:
5382
5385
.
16.
H.K.
Park
and
R.F.
Haglund
, “
Laser ablation and desorption from calcite from ultraviolet to mid-infrared wavelengths
”,
Appl. Phys. A
64
,
431
(
1997
).
17.
Y.
Chen
,
V.
Bulatov
,
L.
Singer
,
J.
Stricker
and
I.
Schechter
, “
Mapping and Elemental Fractionation of Aerosols Generated by Laser-Induced Breakdown Ablation
”.
Anal Bioanal Chem.
383
,
1090
(
2005
).
18.
G.
Callies
,
H.
Schittenhelm
,
P.
Berger
, and
H.
Hugel
,
Modeling of the expansion of laser-evaporated matter in argon, helium and nitrogen and the condensation of clusters
.
Appl. Surf. Sci.
129
,
134
(
1998
).
19.
L. V.
Zhigilei
,
Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation
.
App. Phys. A-Mat. Sci. & Proc.
,
76
(
3
)
339
(
2003
).
20.
T.
Meng-Hsiu
,
C.
Shuei-Yuan
,
S.
Roa-Pu
(Claire) and
S.
Pouyan
.
J. App. Phys.
99
,
54302
(
2006
).
21.
S.i
Kannan
,
A. F.
Lemos
,
J. H. G.
Rocha
, and
J. M. F.
Ferreira
.
Characterization and mechanical performance of the Mg-stabilized beta-Ca3(PO4)2 prepared from Mg-substituted Ca-deficient apatite
.
J. Am. Ceram. Soc.
,
89
:
9
,
2757
(
2006
).
22.
D.G.A.
Nelson
,
W.L. Wefel
Jongebloed
and
J.D.B.
Featherstone
.
Morphology, Histology and Crystallography of Human Dental Enamel Treated with Pulsed Low-Energy Infrared Laser Radiation
.
Caries Res.
21
,
411
(
1987
).
23.
Boutinguiza
,
M.
,
Pou
,
J.
,
Lusquiños
,
F.
,
Comesaña
,
R.
,
Riveiro
,
A.
Laser-assisted production of tricalcium phosphate nanoparticles from biological and synthetic hydroxyapatite in aqueous medium
(
2011
)
Applied Surface Science
,
257
(
12
), pp.
5195
5199
.
24.
Boutinguiza
,
M.
,
Comesaña
,
R.
,
Lusquiños
,
F.
,
Riveiro
,
A.
,
Pou
,
J.
Production of nanoparticles from natural hydroxylapatite by laser ablation
(
2011
)
Nanoscale Research Letters
,
6
(
1
), pp.
X1
5
.
This content is only available via PDF.
You do not currently have access to this content.