Nonlinear absorption of femtosecond-laser pulses enables the induction of structural changes in the interior of bulk transparent materials without affecting their surface. Features are generated by focusing the femtosecond laser pulses in the interior of a single glass piece to investigate change in morphology, mechanical properties, and ring structures of the modified region. Detailed characterization of the effect of laser irradiation is accomplished using differential interference contrast optical microscopy, spatially resolved Raman spectroscopy, and spatially resolved nanoindentation. A numerical model is also developed to predict an absorption volume inside transparent dielectric materials. After the better understanding of effects of optical and laser processing parameters on the resultant features is developed, the femtosecond laser pulses are finally focused on the interface of two glass specimens to implement transmission welding. The weld formation and geometry are discussed and indentation fracture analysis is used to investigate the strength of the weld seams.

1.
Stuart
B.
,
Feit
M.
,
Rubenchik
A.
,
Shore
B.
&
Perry
M.
(
1995
)
Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses
,
Physical Review Letters
,
74
(
12
),
2248
2251
.
2.
Jiang
L.
&
Tsai
H. L.
(
2003
)
Femtosecond Lasers Ablation : Challenges and Opportunities
,
NSF Workshop on Unsolved Problems and Research Needs in Thermal Aspects of Material Removal Processes
,
Stillwater, OK
,
1
15
.
3.
Davis
K. M.
,
Miura
K.
,
Sugimoto
N.
&
Hirao
K.
(
1996
)
Writing waveguides in glass with a femtosecond laser
,
Optics letters
,
21
(
21
),
1729
31
.
4.
Glezer
E. N.
,
Milosavljevic
M.
,
Huang
L.
,
Finlay
R. J.
,
Her
T.-H.
,
Callan
J. P.
&
Mazur
E.
(
1996
)
Three-dimensional optical storage inside transparent materials
,
Optics Letters
,
21
(
24
),
2023
.
5.
Schaffer
C. B.
,
Jamison
A. O.
&
Mazur
E.
(
2004
)
Morphology of femtosecond laser-induced structural changes in bulk transparent materials
,
Applied Physics Letters
,
84
(
9
),
1441
1443
.
6.
Schaffer
C. B.
,
Brodeur
a
,
García
J. F.
&
Mazur
E.
(
2001
)
Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy
,
Optics letters
,
26
(
2
),
93
5
.
7.
Glezer
E. N.
&
Mazur
E.
(
1997
)
Ultrafast-laser driven micro-explosions in transparent materials
,
Applied Physics Letters
,
71
(
7
),
882
.
8.
Bellouard
Y.
(
2006
)
Investigation of femtosecond laser irradiation on fused silica
,
Proceedings of SPIE
,
6108
,
61080M
61080M
-9.
9.
Kucheyev
S. O.
&
Demos
S. G.
(
2003
)
Optical defects produced in fused silica during laser-induced breakdown
,
Applied Physics Letters
,
82
(
19
),
3230
.
10.
Chan
J. W.
,
Huser
T.
,
Risbud
S.
&
Krol
D. M.
(
2001
)
Structural changes in fused silica after exposure to focused femtosecond laser pulses
,
Optics letters
,
26
(
21
),
1726
8
.
11.
Tan
a. W. Y.
&
Tay
F. E. H.
(
2005
)
Localized laser assisted eutectic bonding of quartz and silicon by Nd:YAG pulsed-laser
,
Sensors and Actuators A: Physical
,
120
(
2
),
550
561
.
12.
Tamaki
T.
,
Watanabe
W.
,
Nishii
J.
&
Itoh
K.
(
2005
)
Welding of Transparent Materials Using Femtosecond Laser Pulses
,
Japanese Journal of Applied Physics
,
44
(
No. 22
),
L687
L689
.
13.
Watanabe
W.
(
2006
)
Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses
,
Applied physics letters
,
89
(
2
),
21106
.
14.
Tamaki
T.
,
Watanabe
W.
&
Itoh
K.
(
2006
)
Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm
,
Optics Express
,
14
(
22
),
10460
.
15.
Bovatsek
J.
,
Arai
A.
&
Schaffer
C. B.
(
2006
)
Three-Dimensional Micromachining Inside Transparent Materials Using Femtosecond Laser Pulses : New Applications
,
CLEO/QELS and PhAST 2006
,
CA
,
8
9
.
16.
Miyamoto
I.
(
2007
)
Fusion Welding of Glass Using Femtosecond Laser Pulses with High-repetition Rates
,
Journal of Laser Micro/Nanoengineering
,
2
(
1
),
57
63
.
17.
Horn
A.
,
Mingareev
I.
,
Werth
A.
,
Kachel
M.
&
Brenk
U.
(
2008
)
Investigations on ultrafast welding of glass–glass and glass–silicon
,
Applied Physics A
,
93
(
1
),
171
175
.
18.
Miyamoto
I.
,
Horn
A.
,
Gottmann
J.
,
Wortmann
D.
,
Mingareev
I.
,
Yoshino
F.
,
Schmidt
M.
&
Bechtold
P.
(
2008
)
Novel Fusion Welding Technology of Glass Using Ultrashort Pulse Lasers
,
Proc. 27th International Congress on Applications on Lasers & Electro-Optics
,
Temecula, CA
,
112
121
.
19.
Borrelli
N.
,
Helfinstine
J.
,
Price
J.
&
Schroeder
J.
(
2008
)
Glass Strengthening with an Ultrafast Laser
,
Proc. 27th International Congress on Applications on Lasers & Electro-Optics
,
Temecula, CA
,
185
189
.
20.
Bellouard
Y.
,
Colomb
T.
,
Depeursinge
C.
,
Dugan
M.
,
Said
A. A.
&
Bado
P.
(
2006
)
Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses
.,
Optics express
,
14
(
18
),
8360
8366
.
21.
Gamaly
E. G.
,
Rode
a. V.
,
Luther-Davies
B.
&
Tikhonchuk
V. T.
(
2002
)
Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics
,
Physics of Plasmas
,
9
(
3
),
949
.
22.
Gamaly
E. G.
,
Luther-Davies
B.
,
Hallo
L.
,
Nicolai
P.
&
Tikhonchuk
V. T.
(
2006
)
Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation
,
Physical Review B
,
73
(
21
),
214101
1
-15.
23.
Vukelić
S.
,
Kongsuwan
P.
&
Yao
Y. L.
(
2010
)
Ultrafast Laser Induced Structural Modification of Fused Silica—Part I: Feature Formation Mechanisms
,
Journal of Manufacturing Science and Engineering
,
132
(
6
),
061012
.
24.
Juodkazis
S.
,
Misawa
H.
,
Hashimoto
T.
,
Gamaly
E. G.
&
Luther-Davies
B.
(
2006
)
Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids
,
Applied Physics Letters
,
88
(
20
),
201909
.
25.
Schaffer
C. B.
,
García
J. F.
&
Mazur
E.
(
2003
)
Bulk heating of transparent materials using a high-repetition-rate femtosecond laser
,
Applied Physics A: Materials Science & Processing
,
76
(
3
),
351
354
.
26.
Fischer-Cripps
A. C.
(
2004
)
Nanoindentation
,
Springer
,
New York
.
27.
Hallo
L.
,
Bourgeade
A.
,
Tikhonchuk
V. T.
,
Mezel
C.
&
Breil
J.
(
2007
)
Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation
,
Physical Review B
,
76
(
2
),
024101
1
-12.
28.
Kongsuwan
P.
,
Wang
H.
,
Vukelic
S.
&
Yao
Y. L.
(
2010
)
Characterization of Morphology and Mechanical Properties of Glass Interior Irradiated by Femtosecond Laser
,
Journal of Manufacturing Science and Engineering
,
132
(
4
),
041009
1
-10.
29.
Zipfel
W. R.
,
Williams
R. M.
&
Webb
W. W.
(
2003
)
Nonlinear magic: multiphoton microscopy in the biosciences
,
Nature biotechnology
,
21
(
11
),
1369
-
30.
Shelby
J. E.
(
1997
)
Introduction to Glass Science and Technology
,
The Royal Society of Chemistry
,
Cambridge, UK
.
31.
Charles
R.
(
1961
)
A review of glass strength
,
Progress in ceramic science
,
1
,
1
38
.
32.
Varshneya
A. K.
(
1994
)
Fundamentals of Inorganic Glasses
,
Academic Press, Inc.
,
San Diego, CA
.
33.
Krol
D.
(
2008
)
Femtosecond laser modification of glass
,
Journal of Non-Crystalline Solids
,
354
(
2-9
),
416
424
.
34.
Suzuki
K.
,
Benino
Y.
,
Fujiwara
T.
&
Komatsu
T.
(
2002
)
Densification Energy during Nanoindentation of Silica Glass
,
Journal of the American ceramic society
,
85
,
3102
3104
.
35.
Sakai
M.
(
2011
)
The Meyer hardness: A measure for plasticity?
,
Journal of Materials Research
,
14
(
09
),
3630
3639
.
36.
Hagan
J. T.
(
1979
)
Cone cracks around Vickers indentations in fused silica glass
,
Journal of Materials Science
,
14
(
2
),
462
466
.
37.
King
S. V.
(
1967
)
Ring Configurations in a Random Network Model of Vitreous Silica
,
Nature
,
213
(
5081
),
1112
1113
.
38.
Galeener
F.
(
1979
)
Band limits and the vibrational spectra of tetrahedral glasses
,
Physical Review B
,
19
(
8
),
4292
4297
.
39.
Vukelić
S.
,
Kongsuwan
P.
,
Ryu
S.
&
Yao
Y. L.
(
2010
)
Ultrafast Laser Induced Structural Modification of Fused Silica—Part II: Spatially Resolved and Decomposed Raman Spectral Analysis
,
Journal of Manufacturing Science and Engineering
,
132
(
6
),
061013
.
40.
Miyamoto
I.
(
2007
)
Local Melting of Glass Material and Its Application to Direct Fusion Welding by Ps-laser Pulses
,
Journal of Laser Micro/Nanoengineering
,
2
(
1
),
7
14
.
41.
Lawn
B. R.
(
1993
)
Fracture of Brittle Solids
,
Cambridge University Press
,
Cambridge, UK
.
42.
Kese
K.
&
Rowcliffe
D. J.
(
2003
)
Nanoindentation Method for Measuring Residual Stress in Brittle Materials
,
Journal of the American Ceramic Society
,
86
(
5
),
811
816
.
43.
Kongsuwan
P.
,
Satoh
G.
&
Yao
Y. L.
(
2012
)
Transmission Welding of Glass by Femtosecond Laser: Mechanism and Fracture Strength
,
Journal of Manufacturing Science and Engineering
,
134
(
1
),
011004
.
44.
Mecholsky
J. J.
(
1983
) Toughening in Glass Ceramics, Fracture Mechanics of Ceramics, Volume 6: Measurements,
Transformations, and High-Temperature Fracture
,
R.C.
Bradt
,
A.G.
Evans
,
D.P.H.
Hasselman
, and
F.F.
Lange
, eds.,
Plenum Press
,
New York
.
45.
Soga
N.
(
1985
)
Elastic moduli and fracture toughness of glass
,
Journal of Non-Crystalline Solids
,
73
(
1-3
),
305
313
.
46.
West
J.
(
1999
)
The application of fractal and quantum geometry to brittle fracture
,
Journal of Non-Crystalline Solids
,
260
(
1-2
),
99
108
.
This content is only available via PDF.
You do not currently have access to this content.