We fabricated a novel photodetector by subjecting a Si crystal having a p–n homojunction to phonon-assisted annealing. The photosensitivity of this device for incident light having a wavelength of 1.16 μm or greater was about three-times higher than that of a reference Si-PIN photodiode. The photosensitivity for incident light with a wavelength of around 1.32 μm was increased by applying a forward current. When the forward current density was 10 A/cm2, the device showed photosensitivities of 3.1 A/W at a wavelength of 1.14 μm and 0.10 A/W at 1.32 μm. The photosensitivity at 1.32 μm is at least 4000-times higher than the zero-bias photosensitivity. This remarkable increase was due to the manifestation of optical amplification cause by the forward current injection. For a forward current density of 9 A/cm2, the small-signal gain coefficient of the optical amplification was 2.2 × 10−2, and the saturation power was 7.1 × 102 mW.

1.
Levinshtein
,
M.
,
Rumyantsev
,
S.
&
Shur
,
M.
(
1966
) Handbook Series on Semiconductor Parameters, vol.
1
World Scientific
2.
Loudon
,
A.
,
Hiskett
,
P.A.
&
Buller
,
G.S.
(
2002
)
Enhancement of the infrared detection efficiency of silicon photon-counting avalanche photodiodes by use of silicon germanium absorbing layers
,
Opt. Lett
.
27
,
219
221
3.
Cremer
,
C.
,
Emeis
,
N.
,
Schier
,
M.
,
Heise
,
G.
,
Ebbinghaus
,
G.
&
Stoll
L.
(
1992
)
Grating Spectrograph Integrated with Photodiode Array in InGaAsP/InGaAs/InP
,
IEEE Photonics Technol. Lett
.
4
,
108
110
4.
Phillips
,
A.F.
,
Sweeney
,
S.J.
,
Adams
,
A.R.
&
Thijs
P.J.A.
(
1999
)
The Temperature Dependence of 1.3 and 1.5 μm Compressively Strained InGaAs(P)MQW Semiconductor Lasers
,
IEEE J. Sel.Top. Quantum Electron
.
5
,
401
412
5.
Carey
,
J.E.
,
Crouch
,
C.H.
,
Shen
,
M.
&
Mazur
,
E.
, (
2005
)
Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes
,
Opt. Lett
.
30
,
1773
1775
6.
Geis
,
M.W.
,
Spector
,
S.J.
,
Grein
,
M.E.
,
Schulein
,
R.T.
,
Yoon
,
J.U.
,
Lennon
,
D.M.
,
Wynn
,
C.M.
,
Palmacci
,
S.T.
,
Gan
,
F.
,
Kärtner
,
F.X.
&
Lyszczarz
,
T.M.
, (
2007
)
All silicon infrared photodiodes: photo response and effects of processing temperature
,
Opt.Express
15
,
16886
16895
7.
Geis
,
M.W.
,
Spector
,
S.J.
,
Grein
,
M.E.
,
Schulein
,
R.T.
,
Yoon
,
J.U.
,
Lennon
,
D.M.
,
Gan
,
F.
,
Kärtner
,
F.X.
&
LyszczarzI
,
T.M.
(
2007
)
CMOS-Compatible All-Si High-Speed Waveguide Photodiodes With High Responsivity in Near-Infrared Communication Band
,
IEEE Photonics Technol. Lett
.
19
,
152
154
8.
Baehr-Jones
,
T.
,
Hochberg
,
M.
&
Scherer
,
A.
(
2008
)
Photodetection in silicon beyond the band edge with surface states
,
Opt. Express
16
,
1659
1668
9.
Chen
,
H.
,
Luo
,
X.
,
Poon
,
A.W.
(
2009
)
Cavity-enhanced photocurrent generation by 1.55 µm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator
,
Appl. Phys. Lett
.
95
, 171111
1
3
10.
Lee
,
M.
,
Chu
,
C.
&
Wang
,
Y.
(
2001
)
1.55-μm and infrared-band photoresponsivity of a Schottky barrier porous silicon photodetector
,
Opt. Lett
.
26
,
160
162
11.
Cassalino
,
M.
,
Sirleto
,
L.
,
Moretti
,
L.
,
Gioffrè
,
M.
&
Coppola
,
G.
(
2008
)
Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 µm: Fabrication and characterization
,
Appl. Phys. Lett
.
92
, 251104
1
3
12.
Tanabe
,
T.
,
Nishiguchi
,
K.
,
Kuramochi
,
E.
&
Notomi
,
M.
(
2010
)
All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip
,
Appl. Phys. Lett
.
96
, 101103
1
3
13.
Shi
,
B.
,
Liu
,
X.
,
Chen
,
Z.
,
Jia
,
G.
,
Cao
,
K.
,
Zhang
,
Y.
,
Wang
,
S.
,
Ren
,
C.
&
Zhao
,
J.
(
2008
)
Anisotropy of photocurrent for two-photon absorption photodetector made of hemispherical silicon with (-110) plane
,
Appl. Phys. B
93
,
873
877
14.
Kawazoe
,
T.
,
Mueed
,
M.A.
,
Ohtsu
,
M.
(
2011
)
Highly efficient and broadband Si homojunction structured near-infrared light emitting diodes based on the phonon-assisted optical near-field process
,
Appl. Phys. B
104
,
747
754
15.
Kawazoe
,
T.
,
Ohtsu
,
M.
,
Akahane
,
K.
,
Yamamoto
,
N.
(
2012
)
Si homojunction structured near-infrared laser based on a phonon-assisted process
,
Appl. Phys. B
107
659
663
16.
Kawazoe
T.
,
Kobayashi
K.
,
Takubo
S.
&
Ohtsu
M.
(
2005
)
Nonadiabatic photodissociation process using an optical near field
,
J. Chem. Phys
.
122
, 024715-1-4
17.
Yukutake
S.
,
Kawazoe
T.
,
Yatsui
T.
,
Nomura
W.
,
Kitamura
K.
&
Ohtsu
,
M.
(
2010
)
Selective photocurrent generation in the transparent wavelength range of a semiconductor photovoltaic device using a phonon-assisted optical near-field process
,
Appl. Phys. B, Lasers Opt
.
99
,
415
422
18.
Kawazoe
,
T.
,
Ohtsu
,
M.
,
Inao
,
Y.
&
Kuroda
,
R.
(
2007
)
Exposure dependence of the developed depth in nonadiabatic photolithography using visible optical near fields
,
J. Nanophotonics
1
, 011595
1
9
19.
Yatsui
,
T.
,
Hirata
,
K.
,
Nomura
,
W.
,
Tabata
,
Y.
&
Ohtsu
,
M.
(
2008
)
Realization of an ultra-flat silica surface with angstrom-scale average roughness using nonadiabatic optical near-field etching
Appl. Phys. B
93
,
55
57
20.
Kawazoe
,
T.
,
Fujiwara
,
H.
,
Kobayashi
,
K.
&
Ohtsu
,
M.
(
2009
)
Visible Light Emission From Dye Molecular Grains via Infrared Excitation Based on the Nonadiabatic Transition Induced by the Optical Near Field
,
IEEE J. Sel. Top. Quantum Electron
.
15
,
1380
1386
21.
Bernard
,
M.G.A.
&
Duraffourg
,
G.
(
1961
)
Laser Conditions in Semiconductors
,
Phys. Status Solidi
1
,
699
703
22.
Schaub
,
J.D.
,
Li
,
R.
,
Csutak
,
S.M.
&
Campbell
,
J.C.
(
2001
)
High-Speed Monolithic Silicon Photoreceivers on High Resistivity and SOI Substrates
,
J. Lightwave Technol
.
19
,
272
278
23.
Saitoh
T.
&
Mukai
T.
(
1987
)
1.5 μm GaInAsP traveling-Wave Semiconductor Laser Amplifier IEEE
J. Quantum Electron
.
23
,
1010
1020
24.
Ashcroft
N.W.
&
Mermin
N.D.
(
1976
) Solid State Physics,
Brooks Cole
,
Singapore
598
pp
25.
McIntyre
,
R.J.
(
1966
)
Multiplication Noise in Uniform Avalanche Diodes
,
IEEE Trans. Electron Devices
13
,
164
168
This content is only available via PDF.
You do not currently have access to this content.