The biodegradable and biocompatible polymer such as poly(L-lactic acid) (PLLA) is promising in drug delivery applications, while its induction period of biodegradation prevents the embedded drugs from releasing at the designed rate in the early stage. PLLA degradation profile is a function of its crystallinity, and control over surface crystallinity allows for modification of initial drug release profiles. In this study, laser irradiation is used to modify PLLA surface crystallinity, and its effect on biodegradation profile is investigated. Lower crystallinity favors water penetration into the matrix. As evaluated by molecular weight (MW) via the gel permeation chromatography and material mass change, the reduced surface crystallinity causes higher initial MW decrease rate and earlier occurrence of mass loss. An accelerated initial degradation rate and a shortened induction period of PLLA biodegradation are experimentally obtained. Wide-angle X-ray diffraction measurements show that crystallinity increases with a longer degradation period, suggesting that chain scission enhances chain mobility and thus leads to chain reorganization from a disordered to an ordered state. Based on the hydrolysis reactions and material diffusion, a model is developed to numerically investigate the effect of laser irradiation on the biodegradation profile. A reduced induction period of biodegradation gives the ability to tailor the initial drug release to achieve a designed release rate.

1.
Amass
,
W.
,
Amass
,
A.
&
Tighe
,
B.
(
1998
)
A review of Biodegradable Polymers: Uses, Current Developments in the Synthesis and Characterization of Biodegradable Polyesters, Blends of Biodegradable Polymers and Recent Advances in Biodegradation Studies
,
Polym. Int
.
47
,
89
144
.
2.
Chu
,
C. C.
(
1981
)
Hydrolytic Degradation of Polyglycolic Acid: Tensile Strength and Crystallinity Study
,
J. Appl. Polym. Sci
.
26
,
1727
1734
.
3.
Tsuji
,
H.
&
Ikada
,
Y.
(
1998
)
Properties and Morphology of Poly(L-Lactide). II. Hydrolysis in Alkaline Solution
,
J. Polym. Sci., Part A: Polym. Chem
.
36
,
59
66
.
4.
Siparsky
,
G. L.
,
Voorhees
,
K. J.
&
Miao
,
F.
(
1998
)
Hydrolysis of Polylactic Acid (PLA) and Polycaprolactone (PCL) in Aqueous Acetonitrile Solutions: Autocatalysis
,
J. Environmental Polym. Degrad
.
6
,
31
41
.
5.
Zong
,
X. H.
,
Wang
,
Z. G.
,
Hsiao
,
B. S.
,
Chu
,
B.
,
Zhou
,
J. J.
&
Jamiolkowski
,
D. D.
(
1999
)
Structure and Morphology Changes in Absorbable Poly(glycolide) and Poly(glycolide-co-lactide) during in Vitro Degradation
,
Macromol
.
32
,
8107
8114
.
6.
Renouf-Glausera
,
A. C.
,
Roseb
,
J.
,
Farrarb
,
D. F.
&
Cameron
,
R. E.
(
2005
)
The Effect of Crystallinity on the Deformation Mechanism and Bulk Mechanical Properties of PLLA
,
Biomaterials
26
,
5771
5782
.
7.
Bhatla
,
A.
&
Yao
,
Y. L.
(
2009
)
Effect of Laser Surface Modification on the Crystallinity of Poly(L-Lactic Acid)
,
J. Manuf. Sci. Eng
.
131
,
051004
.
8.
Dunn
,
D. S.
&
Ouderkirk
,
A. J.
(
1990
)
Chemical and Physical Properties of Laser-Modified Polymers
,
Macromol
.
23
,
770
774
.
9.
Hsu
,
S.-T.
,
Tan
,
H.
&
Yao
,
Y. L.
(
2012
)
Effect of Excimer Laser Irradiation on Crystallinity and Chemical Bonding of Biodegradable Polymer
,
Polym. Degrad. Stab
.
97
,
88
97
.
10.
Weir
,
N. A.
,
Buchanan
,
F. J.
,
Orr
,
J. F.
,
Farrar
,
D. F.
&
Dickson
,
G. R.
(
2004
)
Degradation of Poly-L-Lactide. Part 2: Increased Temperature Accelerated Degradation
,
Proc. Instn. Mech. Engrs., Part H: J. Eng. in Med
.
218
,
321
330
.
11.
Yamamoto
,
T.
(
2010
)
Molecular Dynamics of Reversible and Irreversible Melting in Chain-Folded Crystals of Short Polyethylene-Like Polymer
,
Macromol
.
43
,
9384
9393
.
12.
Pitt
,
C. G.
&
Gu
,
Z.
(
1987
)
Modification of the Rates of Chain Cleavage of Poly(ε-Caprolactone) and Related Polyesters in the Solid State
,
J. Controlled Release
4
,
283
292
.
13.
Li
,
S. M.
,
Garreau
,
H.
&
Vert
,
M.
(
1990
)
Structure-Property Relationships in the Case of the Degradation of Massive Poly(α-Hydroxy Acids) in Aqueous Media: Part 2 Degradation of Lactide-Glycolide Copolymers: PLA37.5GA25 and PLA75GA25
,
J. Mater. Sci.: Mater. Med
.
1
,
131
139
.
14.
Lyu
,
S.
,
Schley
,
J.
,
Loy
,
B.
,
Lind
,
D.
,
Hobot
,
C.
,
Sparer
,
R.
&
Untereker
,
D.
(
2007
)
Kinetics and Time-Temperature Equivalence of Polymer Degradation
,
Biomacromol
.
8
,
2301
2310
.
15.
Wang
,
Y.
,
Pan
,
J.
,
Han
,
X.
,
Sinka
,
C.
&
Ding
,
L.
(
2008
)
A Phenomenological Model for the Degradation of Biodegradable Polymers
,
Biomater
.
29
,
3393
3401
.
16.
Stephens
,
C. H.
,
Whitmore
,
P. M.
,
Morris
,
H. R.
&
Bier
,
M. E.
(
2008
)
Hydrolysis of the Amorphous Cellulose in Cotton-Based Paper
,
Biomacromol
.
9
,
1093
1099
.
17.
Tsuji
,
H.
&
Tsuruno
,
T.
(
2010
)
Accelerated Hydrolytic Degradation of Poly(L-Lactide)/Poly(D-Lactide) Stereocomplex up to Late Stage
,
Polym. Degrad. Stab
.
95
,
477
484
.
18.
Tsuji
,
H.
&
Ikarashi
,
K.
(
2004
)
In Vitro Hydrolysis of Poly(L-Lactide) Crystalline Residues as Extended-Chain Crystallites: II. Effects of Hydrolysis Temperature
,
Biomacromol
.
5
,
1021
1028
.
19.
Fischer
,
E. W.
,
Sterzel
,
H. J.
&
Wegner
,
G.
(
1973
)
Investigation of the Structure of Solution Grown Crystals of Lactide Copolymers by Means of Chemical Reactions
,
Kol.-Z.u.Z. Polymere
251
,
980
990
.
20.
Toda
,
A.
,
Tomita
,
C.
,
Hikosaka
,
M.
&
Saruyama
,
Y.
(
1998
)
Melting of Polymer Crystals Observed by Temperature Modulated D.S.C. and Its Kinetic Modeling
,
Polym
.
39
,
5093
5104
.
21.
Li
,
H.
,
Nie
,
W.
,
Deng
,
C.
,
Chen
,
X.
&
Ji
,
X.
(
2009
)
Crystalline Morphology of Poly(L-Lactic Acid) Thin Films
,
Eur. Polym. J
.
45
,
123
130
.
22.
Avrami
,
M.
(
1941
)
Granulation, Phase Change, and Microstructure: Kinetics of Phase Change. III
,
J. Chem. Phys
.
9
,
177
184
.
23.
Alexander
,
L. E.
(
1969
) X-ray diffraction methods in polymer science,
John Wiley & Sons
,
New York
.
24.
Inagaki
,
N.
,
Narushima
,
K.
,
Tsutsui
,
Y.
&
Ohyama
,
Y.
(
2002
)
Surface Modification and Degradation of Poly(Lactic Acid) Films by Ar-Plasma
,
J. Adhes. Sci. Technol
.
16
,
1041
1054
.
25.
Avrami
,
M.
(
1939
)
Kinetics of Phase Change. I: General Theory
,
J. Chem. Phys
.
7
,
1103
1112
.
26.
Menczel
,
J.
&
Wunderlich
,
B.
(
1981
)
Heat Capacity Hysteresis of Semicrystalline Macromolecular Glasses
,
J. Polym. Sci.: Polym. Lett
. Ed.
19
,
261
264
.
27.
Belyayev
,
O. F.
(
1988
)
Mechanism of Melting of Oriented Polymers
,
Polym. Sci. U. S. S. R
.
30
,
2545
2552
.
28.
Lam
,
C. X. F.
,
Savalani
,
M. M.
,
Teoh
,
S. H.
&
Hutmacher
,
D. W.
(
2008
)
Dynamics of in Vitro Polymer Degradation of Polycaprolactone-Based Scaffolds: Accelerated versus Simulated Physiological Conditions
,
Biomed. Mater
.
3
,
034108
.
This content is only available via PDF.
You do not currently have access to this content.