Smoothed Particle Hydrodynamics (SPH) is used to develop a numerical model to simulate the three-phase laser cutting process for medical coronary stent manufacture. The open-source code SPHysics is used to model the interaction between the laser beam and workpiece. This enables the melt flow behaviour in the non-linear pulsed fibre laser cutting process to be modelled. The developed model considers the conversion of laser energy into heat within a very thin surface layer, heat conduction into the parent material and the phase transition between solid, liquid and vapour. Promising agreement with experimental data is obtained for predicting the penetration depth and melt ejection velocity is in acceptable agreement with the published data. Water is also incorporated in this model to help explain the wet cutting mechanism in laser cutting. It is demonstrated that the meshless characteristics of SPH are able to model the droplets ejected from kerf where it is difficult for conventional modelling. A static beam was used throughout the model development.

1.
Gross
,
M.
,
Smooth Particle Hydrodynamics (SPH) Modelling of Laser Cutting
.
International Congress on Aplications of Lasers & Electro Opticss
2008
: p.
637
644
.
2.
Lucy
,
L.B.
,
A numerical approach to the testing of the fission hypothesis
.
The Astronomical Journal
,
1977
.
82
(
12
): p.
1013
1024
.
3.
Gingold
,
R.A.
and
J.J.
Monaghan
,
Smoothed particle hydrodynamics - Theory and application to non-spherical stars
.
Monthly Notices of the Royal Astronomical Society
,
1977
.
181
: p.
375
389
.
4.
Monaghan
,
J.J.
,
Smoothed Particle Hydrodynamics
.
Aann. Rev. Astron. Astro
,
1992
.
30
: p.
543
.
5.
Zhang
,
M.
,
H.
Zhang
, and
L.
Zheng
,
Application of Smoothed Particle Hydrodynamics Method to Free Surface and Solidification Problems
.
Numerical Heat Transfer, Part A: Applications
,
2007
.
52
: p.
299
314
.
6.
Xiong
,
H.-B.
and
J.
Zhu
.
Study of droplet deformation, heat conduction and solidification using incompressible smoothed particle hydrodynamics method
. in
9th International Conference on Hydrodynamics
.
2010
.
Shanghai, China
.
7.
Dalrymple
,
R.A.
,
Rogers
,
B. D.
,
Numerical modeling of water waves with the SPH method
.
Coastal Engineering
,
2006
.
53
(
2–3
): p.
141
147
.
8.
Demuth
,
C.
,
Bieda
,
M.
,
Lasagni
,
A. F.
,
Mahrle
,
A.
,
Wetzig
,
A.
,
Beyer
,
E.
,
Thermal simulation of pulsed direct laser interference patterning of metallic substrates using the smoothed particle hydrodynamics approach
.
Journal of Materials Processing Technology
,
2012
.
212
(
3
): p.
689
699
.
9.
Tong
,
M.
,
Browne
,
D.J.
,
Smoothed particle hydrodynamics modelling of the fluid flow and heat transfer in the weld pool during laser spot welding
.
Materials Science and Engineering
,
2011
.
27
: p.
1
7
.
10.
Ng
,
G.K.L.
,
P.L.
Crouse
, and
L.
Li
,
An analytical model for laser drilling incorporating effects of exothermic reaction, pulse width and hole geometry
.
International Journal of Heat and Mass Transfer
,
2006
.
49
(
7–8
): p.
1358
1374
.
11.
Mills
,
K.C.
, Recommended values of thermopysical properties for selected commercial alloys.
2002
,
Cambridge
:
Wodhead Publishing Limited
.
12.
Brandes
,
E.A.
and
G.B.
Brook
,
Metals Reference Book
.
1992
,
Oxford
:
Butterworth Heinemann
.
13.
Farooq
,
K.
and
A.
Kar
,
Removal of laser-melted material with an assist gas
.
Journal of Applied Physics
,
1998
.
83
(
12
): p.
7467
7473
.
14.
Ramires
,
M.L.V.
,
Nieto de Castro
,
C. A.
,
Nagasaka
,
Y.
,
Nagashima
,
A.
,
Assael
,
M.J.
,
Wakeham
,
W.A.
,
Standard reference data for the thermal conductivity of water
.
Journal of Physical and Chemical Reference Data
,
1995
.
24
: p.
1377
1381
.
15.
Kim
,
M.J.
,
Transient evaporative laser cutting with moving laser by boundary element method
.
Applied Mathematical Modelling
,
2004
.
28
(
10
): p.
891
910
.
16.
Monaghan
,
J.J.
,
Smoothed partcicle hydrodynamics
.
Reports on Progress in Physics
,
2005
.
68
: p.
1703
1759
.
17.
Peyre
,
P.
,
Aubry
,
P.
,
Fabbro
,
R.
,
Neveu
,
R.
,
Longuet
,
A.
,
Analytical and numerical modelling of the direct metal deposition laser process
Journal of Physics D: Applied Physics
,
2008
.
41
(
2
): p.
1
10
.
18.
SPHysics code v2.2
. [cited; Available from: http://www.sphysics.org.
19.
Gómez-Gesteira
,
M.
,
Rogers
,
B.D.
,
Dalrymple
,
R.A.
,
Crespo
,
A.J.C.
,
Narayanaswamy
,
M.
User Guide for the SPHysics Code v2.0
.
2010
[cited; Available from: http://wiki.manchester.ac.uk/sphysics.
20.
Morris
,
J.P.
,
P.J.
Fox
, and
Y.
Zhu
,
Modeling Low Reynolds Number Incompressible Flows Using SPH
.
Journal of Computational Physics
,
1997
.
136
(
1
): p.
214
226
.
21.
Vila
,
J.P.
,
On particle weighted methods and Smooth Particle Hydrodynamics
.
Mathematical Model and Methods in Applied Sciences
,
1999
.
9
(
2
): p.
161
209
.
22.
Colagrossi
,
A.
and
M.
Landrini
,
Numerical simulation of interfacial flows by smoothed particle hydrodynamics
.
Journal of Computational Physics
,
2003
.
191
(
2
): p.
448
475
.
23.
Liu
,
M.B.
and
G.R.
Liu
,
Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments
.
Archives of Computational Methods in Engineering
.
17
: p.
25
76
.
24.
Lee
,
E.-S.
, Truly incompressible approach for computing incompressible flow in SPH and comparisons with the traditional weakly compressible approach, in
School of Mechanical, Aerospace and Civil Engineering
.
2007
,
The University of Manchester
:
Manchester
. p.
165
.
25.
Lind
,
S.J.
,
Xu
,
R.
,
Stansby
,
P. K.
,
Rogers
,
B. D.
,
Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves
.
Journal of Computational Physics
,
2011
.
231
(
4
): p.
1499
1523
.
26.
Low
,
D.K.Y.
and
L.
Li
,
An investigation into melt flow dynamics during repetitive pulsed laser drilling of transparent media
.
Optics and Laser Technology
,
2001
.
33
: p.
515
522
.
This content is only available via PDF.
You do not currently have access to this content.