The effects of laser cladding process parameters on characteristics such as track height and width have now been well investigated, experimentally, analytically and numerically. Less predictable, due to complexity of the non-linear physical effects during laser cladding, but still highly significant for practical application, are characteristics such as the microstructure and mechanical properties of the final clads or parts produced from them.

This paper presents an investigation into the laser cladding of M2 steel using a coaxial nozzle. Single scan tracks were produced on M2 substrates at a number of specific energies and line masses and also modelled using a coupled Computational Fluid Dynamics (CFD) and Finite Elements (FE) model of the process. Characteristic of the clad track are predicted using the model with and without the influence of melt pool flow accounted for and the predictions compared with the experiment outcomes, analyzed via techniques such as Optical microscopy, Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD). The results highlight the many parameters that affect the laser cladding process.

1.
Pinkerton
,
A.J.
&
Li
,
L.
(
2004
)
Multiple-layer cladding of stainless steel using a high-powered diode laser: an experimental investigation of the process characteristics and material properties
,
Thin Solid Films
453–454
,
471
476
.
2.
Majumdar
,
D.
,
Pinkerton
,
A.J.
,
Liu
,
Z.
,
Manna
,
I.
&
Li
,
L.
(
2005
)
Mechanical and electrochemical properties of multiple-layer diode laser cladding of 316L stainless steel
,
Applied Surface Science
247
,
373
377
.
3.
Shah
,
K.
(
2011
),
Laser Direct Metal Deposition of Dissimilar and Functionally Graded Alloys
, PhD thesis,
The University of Manchester
,
UK
4.
Syed
W.U.H.
,
Pinkerton
,
A.J.
,
Liu
,
Z.
&
Li
,
L.
(
2007
)
Single-step laser deposition of functionally graded coating by dual wire-powder or powder-powder feeding--A comparative study
,
Applied Surface Science
253
,
19
,
7926
7931
5.
Pleterski
,
M.
,
Sek
,
J.T.
,
Muhic
,
T.
&
Kosec
,
L.
(
2011
),
Laser Cladding of Cold-Work Tool Steel by Pulse Shaping
,
Journal of Materials Science Technology
27
,
707
713
.
6.
Alimardani
,
M.
,
Fallah
,
V.
,
Hajepour
,
A.
&
Toyserkani
,
E.
(
2010
)
The effect of localized dynamic surface preheating in laser cladding of Stellite
1
,
204
,
3911
3919
.
7.
Zhou
,
S.
,
Dai
,
X.
&
Zeng
,
X.
(
2009
)
Effects of processing parameters on structure of Ni-based WC composite coatings during laser induction hybrid rapid cladding
,
Applied Surface Science
255
,
8494
8500
.
8.
Majumdar
,
D.
,
Pinkerton
,
A.J.
,
Liu
,
Z.
,
Manna
,
I.
&
LI
,
L.
(
2005
)
Mechanical and electrochemical properties of multiple-layer diode laser cladding of 316L stainless steel
,
Applied Surface Science
247
,
373
377
.
9.
Liu
,
Z.
,
Chua
,
C.
,
Leong
,
K.
,
kempen
,
K.
,
Thijs
,
L.
,
Yasa
,
E.
,
Van-Humbeeck
,
J.
&
Kruth
,
J.
2011
.
A preliminary investigation on Selective Laser Melting of M2 high speed steel, Innovative Developments in Virtual and Physical Prototyping
,
Proceedings of the 5th International Conference on Advanced Research in Virtual and Rapid Prototyping
,
Leiria, Portugal
,
28 September - 1 October, 2011
,
339
346
.
10.
Niu
,
H.J.
&
Chang
,
I.T.H.
(
2000
)
Microstructural evolution during laser cladding of M2 high speed steel
,
Metallurgical and Materials Transactions A
31
,
2615
2625
.
11.
Zhou
,
X.
,
Feng
,
F.
&
Jian
,
J.
(
2011
)
Solidification microstructure of M2 high speed steel by different casting technologies
,
China Foundry
8
,
290
294
.
12.
Zhou
,
X.
,
Fang
,
F.
&
Jiang
,
J.
(
2011
),
A study on the microstructure of AISI M2 high speed steel manufactured by continuous casting
,
Advance Materials Research
146–147
,
1211
1215
.
13.
Arias
,
J.
,
Cabeza
,
M.
,
Castro
,
G.
,
Feijoo
,
I.
,
Merino
,
P.
&
Pena
,
G.
(
2010
)
Microstructural characterization of laser surface melted AISI M2 tool steel
,
Journal of Microscopy
239
,
184
193
.
14.
Colaço
,
R.
&
Vilar
,
R.
(
1998
)
Effect of the processing parameters on the proportion of retained austenite in laser surface melted tool steels
,
Journal of Materials Science Letters
17
,
563
567
.
15.
Amara
,
E.H.
,
Hamadi
,
F.
,
Achab
,
L.
&
Boumia
,
O.
(
2006
)
Numerical modelling of the laser cladding process using a dynamic mesh approach
,
Journal of Achievements in Materials and Manufacturing Engineering
15
,
100
106
.
16.
Plati
,
A.
,
Tan
,
J.C.
,
Golosnoy
,
I.O.
,
Persoons
,
R.
,
Acker
,
K.V.
&
Clyne
,
T.W.
(
2006
),
Residual Stress Generation During Laser Cladding of Steel with a Particulate Metal Matrix Composite
,
Advanced Engineering Materials
8
,
619
624
.
17.
Toyserkani
,
E.
,
Khajepour
,
A.
&
Corbin
,
S.
(
2003
),
Three-dimensional finite element modeling of laser cladding by powder injection: Effects of powder feedrate and travel speed on the process
,
Journal of Laser Applications
15
,
153
160
.
18.
Hofmana
,
J.T.
,
de Lange
,
D.F.
,
Pathiraj
,
B.
&
Meijer
,
J.
(
2011
),
FEM modeling and experimental verification for dilution control in laser cladding
,
Journal of Materials Processing Technology
211
,
187
196
.
19.
Leblond
,
J.B.
, &
Devaux
,
J.
(
1984
)
A new kinetic model for anisothermal metallurgical transformations in steel including effect of austenite grain size
,
Acta Metallurgica
32
,
137
146
20.
Koistinen
,
D.P.
&
Marburger
,
R.E.
, (
1959
)
A general equation prescribing extend of austenite-martensite transformation in pure Fe-C alloysand plain carbon steels
,
Acta Metallurgica
7
,
59
60
.
21.
Benyounis
,
K.Y.
,
Fakron
,
O.M.
&
Abboud
,
J.H.
(
2009
)
Rapid solidification of M2 high-speed steel by laser melting
,
Materials and Design
30
,
674
678
This content is only available via PDF.
You do not currently have access to this content.