The increase in both power and packing densities in power electronic devices has led to an increase in the market demand for effective heat-dissipating materials, with high thermal conductivity and thermal expansion coefficient compatible with chip materials still ensuring the reliability of the power modules. In this context, metal matrix composites: carbon fibers, carbon nano fibers and diamond reinforced copper matrix composites among them are considered very promising as a next generation of thermal management materials in power electronic packages. These composites exhibit enhanced thermal properties compared to pure copper combined with lower density. This article presents the fabrication techniques of copper/carbon composite films by powder metallurgy and tape casting and hot-pressing; these films promise to be efficient heat-dissipation layers for power electronic modules. The thermal analyses clearly indicate that interfacial treatments are required in these composites to achieve high thermo-mechanical properties. Interfaces (through novel chemical and processing methods), when selected carefully and processed properly will form the right chemical/mechanical link between copper and carbon enhancing all the desired thermal properties while minimizing the deleterious effect. In this paper, we outline a variety of methods that are system specific that achieve these goals.

1.
Mathias
,
J.D.
,
Geffroy
,
P.M.
&
Silvain
,
J.F.
(
2009
).
Architectural optimization for microelectronic packaging.
Applied Thermal Engineering
29
(
11-12
),
2391
2395
, August 2009.
2.
Saums
,
D.L.
(
2004
).
Developments in selective high thermal conductivity orientation in CTE-compatible substrate and package component materials
.
20th IEEE Semi-Therm Symposium
.
3.
Zweben
,
C.
(
1998
).
Advances in composite materials for thermal management in electronic packaging.
4.
Schubert
,
T.
,
Ciupinski
,
L.
,
Zielinski
,
W.
,
Michalski
,
A.
,
Weißgarber
,
T.
, &
Kieback
,
B.
(
2008
).
Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications.
Scripta Materialia
58
(
4
),
263
266
.
5.
Chu
,
K.
,
Liu
,
Z
,
Chengchang
Jia
,
Chen
,
H.
,
Liang
,
X.
,
Gao
,
W.
,
Tian
,
W
, &
Guo
,
H.
(
2010
).
Thermal conductivity of SPS consolidated Cu/diamond composites with Cr-coated diamond particles
.
Journal of Alloys and Compounds
,
490
(
1-2
),
453
458
.
6.
Vincent
,
C.
(
2008
). PhD thesis, Le
composite cuivre / nanofibre de carbone
.
Université de Bordeaux 1
,
France
.
7.
Veillère
,
A.
(
2009
). PhD thesis,
Drains thermiques adaptatifs : Cuivre allié / Fibres de carbone
.
Université de Bordeaux 1
,
France
.
8.
Silvain
,
J.F.
,
Denis-Lutard
,
V.
,
Geoffroy
,
P.M.
, &
Heintz
,
J.M.
(
2010
).
Adaptive composite materials with novel architectures.
Materials Science Forum
,
631
-
632
, 149-154.
9.
Geoffroy
,
P.M.
,
Chartier
,
T.
, &
Silvain
,
J.F.
(
2007
).
Preparation by tape casting and hot pressing of copper carbon composites films.
Journal of the European Ceramic Society
27
,
291
299
.
10.
Silvain
,
J.F.
,
Vincent
,
C.
,
Heintz
,
J.M.
, &
Chandra
,
N.
(
2009
).
Novel processing and characterization of Cu/CNF nanocomposite for high thermal conductivity applications
,
Composites Science and Technology
69
,
2474
2484
.
11.
Xia
,
Y.
,
Song
,
Y.Q.
,
Lin
,
C.G.
,
Cui
,
S.
&
Fang
,
Z.Z.
(
2009
).
Effect of carbide formers on the microstructure and thermal conductivity of diamond-Cu composites for heat sink materials
.
Transactions of Nonferrous Metals Society of China
,
19
, 1161-1166.
12.
Silvain
,
J.F.
,
Heintz
,
J.M.
&
Vincent
,
C.
(
2010
). Procédé de formation d’un dépôt métallique à la surface d’un substrat et applications,
French patent FR1055422
, 5th of July 2010.
13.
Jiangs
,
X.
,
Herricks
,
T.
&
Xia
,
Y.
(
2002
).
CuO nanowires can be synthesized by heating copper substrates in air.
Nano Letters
2
,
12
.
This content is only available via PDF.
You do not currently have access to this content.