In materials processing pulses in the ps range are an excellent tool to achieve high precision. Although for metals even shorter pulses would be desirable, the lower ps range is attractive from the point of view of the availability of industrial grade systems. In that sense we have analyzed metals and found that the increase of the pulse duration from 10ps to 50ps directly goes along with a significant drop of the maximum achievable volume ablation rate which may reduce the attractiveness of systems with pulse durations in the range of a few tens of ps. The situation changes for non metals like ceramics, polyether ether ketone (PEEK) and polycrystalline diamond (PCD). For PEEK and PCD the dependence of the ablation efficiency on the pulse duration in the investigated regime is strongly reduced. Silicon again shows a metal like behavior, which seems to be independent from the doping level. The porous form of the chosen zirconium oxide ceramic thwarted a systematic study to determine the thresholdfluence and the energy penetration depth at the used laser wavelength of 1064nm. Nevertheless it was possible to machine small structures into the zirconium oxide. The obtained results show, that laser systems with pulse durations in the range of a few tens of ps, which are expected to be fiber based and cost effective, may be a very attractive alternative to machine industrially relevant non metals.

1.
S.
Pierrot
,
J.
Saby
,
B.
Cocquelin
and
F.
Salin
(
2011
);
High-Power all Fiber Picosecond Sources from IR to UV
;
Proc. of SPIE
; Vol.
7914
; paper
79140Q
2.
S.
Kanzelmeyer
,
H.
Sayinc
,
T.
Theeg
,
M.
Frede
,
J.
Neumann
and
D.
Kracht
(
2011
);
All-fiber based amplification of 40 ps pulses from a gain-switched laser diode
;
Proc. of SPIE
; Vol.
7914
; paper
191411
3.
P
Deladurantaye
,
A.
Cournoyer
,
M.
Drolet
,
L.
Desbiens
,
D.
Lemieux
,
M.
Briand
and
Y.
Taillon
(
2011
);
Material micomachining using bursts of high repetition rate picoseconds pulses from a fiber laser source
;
Proc. of SPIE
; Vol.
7914
; paper
791404
4.
B.N.
Chichkov
,
C.
Momma
,
S.
Nolte
,
F.
van Alvensleben
and
A.
Tünnermann
(
2001
);
Femtosecond, picosecond and nanosecond laser ablation of solids
;
Applied Physics A
63
; pp.
109
115
5.
G.
Mourou
et al (
2002
);
Method for controlling Configuration of laser induced breakdown and ablation
; US Patent US RE37,585 E
6.
Friedrich
Dausinger
,
Helmut
Hügel
and
Vitali
Konov
(
2003
);
Micro-machining with ultrashort laser pulses: From basic understanding to technical applications
;
Proc. SPIE, 5147
,
106
115
7.
Detlef
Breitling
,
Andreas
Ruf
and
Friedrich
Dausinger
(
2004
);
Fundamental aspects in machining of metals with short and ulrashort laser pulses
;
Proc. SPIE 5339
,
49
63
8.
M.
Schmid
,
B.
Neuenschwander
,
V.
Romano
,
B.
Jaeggi
and
U.
Hunziker
(
2011
);
Processing of metals with ps-laser pulses in the tange between 10ps and 100ps
;
Proc. of SPIE
; Vol.
7920
; paper
792009
9.
B.
Jaeggi
,
B.
Neuenschwander
,
M.
Schmid
,
M.
Muralt
,
J.
Zuercher
and
U.
Hunziker
(
2011
);
Influence of the Pulse Duration in the ps-Regime on the Ablation Efficiency of Metals
;
Physics Procedia
12
(2011), pp.
164
171
10.
M.
Lenzer
,
J.
Krüger
,
S.
Sartania
,
Z.
Cheng
,
Ch.
Spielmann
,
G.
Mourou
,
W.
Kautek
and
F.
Kausz
(
1998
);
Femtosecond Optical Breakdown in Dielectrics
;
Physical Review Letters
80
,
4076
1079
11.
A.
Rosenfeld
,
M.
Lorenz
,
R.
Stoian
,
D.
Ashkenasi
(
1999
);
Ulrashort-laser-pulse damage threshold of transparent materials and the role of incubation
;
Appl. Phys. A
; Vol.
69
[Suppl.]; pp.
373
376
12.
S.
Preuss
,
A.
Demchuk
and
M.
Stuke
(
1995
);
Sub-picosecond UV ablation of metals
;
Appl. Phys. A
; Vol.
61
; pp
33
37
13.
M.
Hashida
et al (
2002
);
Ablation threshold dependence on pulse duration for copper
;
Applied surface science
;
197-198
; pp.
862
867
14.
P.
Mannion
,
J.
Magee
,
E.
Coyne
and
G.M.
O’Conner
(
2003
);
Ablation thresholds in ultrafast laser micro-machining of common metals in air
; in
Proceedings SPIE 4876
;
470
478
15.
J.
Bonse
,
J.M.
Wrobel
,
J.
Krüger
,
W.
Kautek
(
2001
);
Ultrashort-pulse laser ablation of indium phosphide in air
;
Appl. Phys. A
; Vol.
72
; pp.
89
94
16.
G.
Raciukaitis
,
M.
Brikas
,
P.
Gecys
,
B.
Voisiat
,
M.
Gedvilas
(
2009
);
Use of High Repetition Rate and High Power Lasers in Microfabrication: How to keep Efficiency High?
;
JLMN Journal of Laser Micro/Nanoengineering
; Vol.
4
(
3
) p
186
17.
B.
Neuenschwander
et al (
2010
);
Processing of metals and dielectric materials with ps-laserpulses: results, strategies, limitations and needs
; in
Proc. SPIE
;
7584
26
18.
M. D.
Perry
et al (
1999
);
Ultrashort-pulse laser machining of dielectric materials
;
J. of Appl. Phys.
; Vol.
85
; No.
9
; pp.
6803
6810
19.
Nolte
,
S.
et al. (
1997
);
Ablation of metals by ultrashort laser pulses
;
J. Opt. SOC. Am B
; Vol.
14
; no.
10
; pp
2716
2722
20.
Y.
Jee
,
M.F.
Becker
and
R.M.
Walser
(
1988
);
Laser-induced damage on single-crystal metal surfaces
;
J. Opt. Soc. Am. B5
; 1988
21.
P.T.
Mannion
,
J.
Magee
,
E.
Coyne
,
G.M.
O’Connor
and
T.J.
Glynn
(
2004
);
The effect of damage accumulation behavior on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air
;
Appl. Surface Science
233
; pp
275
287
22.
W.
Perrie
,
A.
Rushton
,
M.
Gil
,
P.
Fox
and
W.
O’Neill
(
2005
);
Femtosecond laser micro-structuring of alumina ceramic
;
Applied Surface Science
248
; pp.
213
217
This content is only available via PDF.
You do not currently have access to this content.