Laser cladding offers an excellent means for surface coating and alloying. Areas of a component can be targeted and locally modified with the properties tailored to meet specific applications. Research has generally concentrated on the use of powder. Here, work on a laser process of coincidentally fed wire and powder is presented, where the microstructure is altered depending on the laser parameters used, giving the ability to deposit functionally graded materials. Optical, SEM, EDS, XRD and microhardness have been used to characterise the clad layers. Results for the deposition of Ti-6Al-4V wire with WC powder using a 2 kW IPG fibre laser show that the amount of dissolution and distribution of the WC powder can be controlled, being largely influenced by the laser power, interaction time and energy density used. At a given energy density (257 J/mm2) no WC particles were observed in clads at higher powers (1.8 kW), whereas at lower power (1.2 kW) but the same energy density (257 J/mm2) WC particles were still present within the clad with interaction times 1.1 second and 1.6 second respectively. Similarly, the formation and morphology of the TiC formed within the clad layer can be tailored to specific requirements.

1.
Ion
,
J.C.
(
2005
) Laser Processing of Engineering Materials.
Principle, Procedure and Industrial Application
.
Elsevier Butterworth Heinemann
,
Linacre House, Jordan Hill, Oxford, UK
.
2.
Boussaha
,
E.
,
Aouici
,
S.
,
Bahloul
,
A.
&
Sahour
,
M.C.
(
2009
)
Optimization of geometrical features of laser cladding obtained by powder injection
,
Physics Procedia
,
2
(
3
),
1147
1152
.
3.
Mok
,
S.H.
,
Bi
,
G.
,
Folkes
,
J.
&
Pashby
,
I.
(
2008
)
Deposition of Ti-6Al-4V using a high power diode laser and wire, Part I: Investigation on the process characteristics
,
Surface and Coatings Technology
,
202
(
16
),
3933
3939
.
4.
Toyserkani
,
E.
,
Khajepour
A.
, and
Corbin
S.
, (
2005
) Laser Cladding.
CRC Press
,
Florida, USA
.
5.
Farayibi
,
P.K.
,
Folkes
,
J.
,
Clare
,
A.
&
Oyelola
O.
(
2011
) Cladding of pre-blended Ti-6Al-4V and WC powder for wear resistant applications, Surface and Coatings Technology. In Press, Accepted Manuscript.
6.
Huang
,
C.
,
Zhang
Y.
, and
Vilar
R.
(
2011
)
Microstructure characterisation of laser clad TiVCrASi high entropy alloy coating on Ti-6Al-4V substrate, Advanced Materials Research
,.
154
155
, 621–625.
7.
Pleshakov
,
E.
,
Senyavs’kyi
Y.
, and
Filip
R.
(
2002
)
Laser Surface Modification of Ti-6Al-4V alloy with Silicon Carbide
,
Materials Science
,
38
(
5
),
37
42
.
8.
Folkes
,
J.A.
and
Shibata
K.
(
1994
)
Laser cladding of Ti-6Al-4V with various carbide powders
,
Journal of Laser Applications
,.
6
(
2
),
88
94
.
9.
Zhang
,
Y.
,
Wei
,
Z.
,
Shi
,
L.
&
Xi
,
M
. (
2008
)
Characterization of laser powder deposited Ti-TiC composites and functional gradient materials, Journal of Materials Processing Technology
,
206
(
1–3
),
438
444
.
10.
Verezub
,
O.
,
Kalazi
,
Z.
,
Buza
,
G.
,
Verezub
,
N.V.
, &
Kaptay
,
G
. (
2009
)
Classification of laser beam induced surface engineering technologies and in situ synthesis of steel matrix surface nanocomposites
,
Surface Engineering
,
1
8
.
11.
Zhang
,
J.B.
,
Fan
,
D.
,
Zheng
,
M.
,
Sun
,
Y.N.
, &
Zheng
,
Y.F.
(
2008
)
Characterisation of Laser Cladding WC-Ti Composite Coatings
,
Key Engineering Materials
,
368
372
, 1316–1318.
12.
Vreeling
,
J.A.
,
Ocelík
,
V.
, and
De Hosson
,
J.T.M.
(
2002
)
Ti-6Al-4V strengthened by laser melt injection of WCp particles
,
Acta Materialia
,
50
(
19
),
4913
4924
.
13.
Wang
,
F.
,
Mei
,
J.
&
Wu
,
X.
(
2006
)
Microstructure study of direct laser fabricated Ti alloys using powder and wire
,
Applied Surface Science
,
253
(
3
),
1424
1430
.
14.
Wang
,
F.
,
Mei
,
J.
, &
Wu
,
X.
(
2007
)
Compositionally graded Ti6Al4V+TiC made by direct laser fabrication using powder and wire
,
Materials & Design
,
28
(
7
),
2040
2046
.
15.
Syed
,
W.U.H.
&
Li
,
L.
(
2005
)
Effects of wire feeding direction and location in multiple layer diode laser direct metal deposition
,
Applied Surface Science
,
248
(
1–4
),
518
524
.
16.
Gopagoni
,
S.
,
Hwang
,
J.Y.
,
Singh
,
A.R.P
,
Mensah
,
B.A.
,
Bunce
,
N.
,
Tiley
,
J.
,
Scharf
,
T.W.
, &
Banerjee
,
R.
(
2011
)
Microstructural evolution in laser deposited nickel-titanium-carbon in situ metal matrix composites
,
Journal of Alloys and Compounds
,
509
(
4
),
1255
1260
.
17.
Zeng
,
X.
,
Zhu
,
B.
,
Tao
,
Z.
&
Cui
,
K.
, (
1996
)
Analysis of energy conditions for laser cladding ceramic-metal composite coatings
.
Surface and Coatings Technology
,
79
(
1–3
),
162
169
.
18.
Kou
,
S.
(
2003
) Welding Metallurgy,
John Wiley & Sons Inc
.
19.
Hofmeister
,
W.
,
Griffith
,
M.
,
Ensz
,
M.
&
Smugeresky
,
J.
(
2001
)
Solidifcation in Direct Metal Deposition by LENS Processing
,
Journal of Minerals, Metals and Materials Society
,
53
(
9
),
30
34
.
20.
Vander Voort
,
G.F.
(
2007
) Metallography, principles and practice,
ASM International, Materials Park
,
OH 44073-0002, USA
.
21.
Underwood
,
E.E.
(
1998
) Quantitative Metallurgy, in ASM Metal Handbook: Metallography and Microstructure,
ASM International
,
USA
,
187
220
.
22.
Morris
,
J.W.
(
2001
) The Influence of Grain Size on Mechanical Properties of Steel.
Department of Materials Science and Engineering, University of California
,
Berkeley, USA
.
23.
Liujie
,
X.
,
Jiandong
,
X.
,
Shizhong
,
W.
,
Yongzhen
,
Z.
&
Rui
,
L.
(
2006
)
Investigation on wear behaviors of high-vanadium high-speed steel compared with high-chromium cast iron under rolling contact condition
,
Materials Science and Engineering: A
,
434
(
1–2
),
63
70
.
24.
Lee
,
H.R.
,
Kim
,
D.J.
,
Hwang
,
N.M.
&
Kim
,
D.Y.
(
2003
)
Role of Vanadium Carbide Additive during Sintering of WC–Co: Mechanism of Grain Growth Inhibition
,
Journal of the American Ceramic Society
,
86
(
1
),
152
154
.
25.
Dobrzanski
,
L.A.
,
Labisz
,
E.
,
Jonda
,
E.
&
Klimpel
,
A.
(
2007
)
Comparison of the surface alloying of the 32CrMoV12-28 tool steel using TiC and WC powder
,
Journal of Materials Processing Technology
,
191
(
1–3
),
321
325
.
This content is only available via PDF.
You do not currently have access to this content.