During keyhole mode laser welding the absorption of the laser beam at the vapour capillary, the keyhole, takes directly place by Fresnel absorption. From ultra high speed imaging it was observed that waves stream down the keyhole front. By introducing a wavy surface to the modelled keyhole front, the dependency of the absorption on the slope of the waves was studied. Even waves of low roughness rapidly cause shadowing, particularly at low welding speed. For 1 µm-lasers the direct absorptance increases for higher waviness while CO2-lasers follow the opposite trend. The CO2-laser operates close to the Brewster-maximum for smooth keyholes, while waves introduce reflective domains. The sensitivity to waviness decreases with increasing speed for the 1 µm-wavelength lasers.

1.
A.
Kaplan
(
1994
)
A model of deep penetration laser welding based on calculation of the keyhole profile
,
J. Phys. D: Appl. Phys.
27
,
1805
1814
.
2.
I.
Eriksson
(
2011
)
Optical monitoring and analysis of laser welding, Licentiate thesis
,
Luleå University of Technology
,
Sweden
.
3.
R.
Fabbro
,
F.
Coste
,
D.
Goebels
,
M.
Kielwasser
(
2006
)
Study of CW Nd-Yag laser welding of Zn-coated steel sheets
,
J. Phys. D: Appl. Phys.
39
,
401
409
.
4.
Y.
Kawahito
,
M.
Mizutani
,
S.
Katayama
(
2009
)
High quality welding of stainless steel with 10 kW high power fibre laser
,
Sci. Techn. Weld. Join.
14
,
288
294
.
5.
A.F.H.
Kaplan
,
M.
Mizutani
,
S.
Katayama
,
A.
Matsunawa
(
2002
)
Unbounded keyhole collapse and bubble formation during pulsed laser interaction with liquid zinc
,
J. Phys. D: Appl. Phys.
35
,
1218
1228
.
6.
I.
Eriksson
,
J.
Powell
,
P.
Gren
,
A.F.H.
Kaplan
(
2010
)
New high-speed photography technique for observation of fluid flow in laser welding
,
Opt. Eng.
49
,
100503
(3 p).
7.
A.
Kaplan
(
1994
)
Modellrechnung und numerische Simulation von Absorption
,
Wärmeleitung und Strömung des Laser-Tiefschweißens
, Doctoral thesis (in German),
Vienna University of Technology
,
Vienna, Austria
.
8.
M.
Beck
,
P.
Berger
,
H.
Huegel
(
1995
)
Effect of plasma formation on beam focusing in deep penetration welding with CO2 lasers
,
J. Phys. D: Appl. Phys.
28
,
12
,
2430
2442
.
9.
E.H.
Amara
,
R.
Fabbro
(
2008
)
Modelling of gas jet effect on the melt pool movements during deep penetration laser welding
,
J. Phys. D: Appl. Phys.
41
,
055503
.
10.
H.
Koch
,
K.-H.
Leitz
,
A.
Otto
,
M.
Schmid
(
2010
)
Laser deep penetration welding simulation based on a wavelength dependent absorption model
,
Physics Procedia
,
5
,
309
315
.
11.
M.
Geiger
,
K.-H.
Leitz
,
H.
Koch
,
A.
Otto
(
2009
)
A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets
,
Prod. Eng. Res. Dev.
3
,
127
136
.
12.
S.
Pang
,
L.
Chen
,
J.
Zhou
,
Y.
Yin
,
T.
Chen
(
2011
)
A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding
,
J. Phys. D: Appl. Phys.
44
,
025301
(15 p).
13.
J.H.
Cho
,
S.J.
Na
(
2009
)
Three-dimensional analysis of molten pool in GMA-laser hybrid welding
,
Weld. J.
88
,
35
43
.
14.
X.
Jin
,
P.
Berger
,
T.
Graf
(
2006
)
Multiple reflections and Fresnel absorption in an actual 3D keyhole during deep penetration laser welding
,
J. Phys. D: Appl. Phys.
39
,
4703
4712
.
15.
X.
Jin
(
2008
)
A three-dimensional model for multiple reflections for high-speed deep penetration laser welding based on an actual keyhole
,
Opt. Las. Eng.
46
,
83
93
.
16.
D.
Bergström
,
J.
Powell
,
A. F. H.
Kaplan
(
2007
)
The absorptance of non-ferrous alloys to Nd:YLF and Nd:YAG laser light at room temperature
,
Applied Optics
,
46
,
1290
1301
.
17.
D.
Bergström
,
J.
Powell
,
A. F. H.
Kaplan
(
2007
)
The absorptance of steels to Nd:YLF and Nd:YAG laser light at room temperature
,
Applied Surface Science
,
253
,
5017
5028
.
18.
D.
Bergström
,
J.
Powell
,
A. F. H.
Kaplan
(
2007
)
Light scattering and absorption in Gaussian random rough metal surfaces using the geometric optics approximation
,
J. Appl. Phys.
101
,
113504
(11 p).
19.
D.
Bergström
,
J.
Powell
,
A. F. H.
Kaplan
(
2008
)
The absorption of light by rough metal surfaces-A three-dimensional ray-tracing analysis
,
J. Appl. Phys.
,
103
,
103515
.
20.
A.
Matsunawa
,
V.
Semak
(
1997
)
The simulation of front keyhole wall dynamics during laser welding
,
J. Phys. D: Appl. Phys
,
30
,
798
809
.
21.
V.V.
Semak
,
W. D.
Bragg
,
B.
Damkroger
,
S.
Kempka
(
1999
)
Transient model for the keyhole during laser welding
,
J. Phys. D: Appl. Phys
,
32
,
L61
L64
.
22.
P.
Norman
,
H.
Engström
,
A. F. H.
Kaplan
(
2008
)
Theoretical analysis of photodiode monitoring of laser welding defects by imaging combined with modelling
,
J. Phys. D: Appl. Phys.
41
,
195502
(9 p).
23.
Y.
Chen
,
C.H.
Gan
,
L.X.
Wang
,
G.
Yu
,
A.
Kaplan
(
2005
)
Laser surface modified ductile iron by pulsed Nd:YAG laser beam with two-dimensional array distribution
,
Applied Surface Science
,
2456
, n
1–4
,
316
321
.
24.
Y.
Chen
,
C.H.
Gan
,
Z.
Tainua
,
G.
Yu
,
P.
Bai
,
A.
Kaplan
(
2005
)
Laser-surface-alloyed carbon nanotubes reinforced hydroxyapatite composite coatings
,
Applied Physics Letters
,
86
,
25
,
251905
251913
.
25.
M.
Baeva
,
P.
Baev
,
A.
Kaplan
(
1997
)
An analysis of the heat transfer from a moving elliptical cylinder
,
J Phys D: Appl Phys
,
30
,
8
,
1190
1196
.
26.
A.F.H.
Kaplan
(
2011
)
Influence of the beam profile formulation when modelling fibre-guided laser welding
,
J Laser Appl
(in press).
27.
A.F.H.
Kaplan
(
2011
)
Fresnel absorption of 1 µm-and 10 µm-laser beams at the keyhole wall during laser beam welding: Comparison between smooth and wavy surfaces
,
Appl Surf Sci
(in press).
This content is only available via PDF.
You do not currently have access to this content.