TiO2 nanoparticles have received a special attention due to their applications in many different fields. In this work we report on the production of TiO2 nanoparticles by means of a pulsed laser to ablate titanium metallic target submerged in water and ethanol. TiO2 nanoparticles with controllable average diameter have been obtained. Crystalline phases, morphology and optical properties of the obtained nanoparticles were characterized by means of transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and UV-vis absorption spectroscopy. The produced colloidal suspensions consisting in titanium dioxide crystalline nanoparticles showed spherical shape with diameters ranging from 3 to 40 nm. Nanoparticles are polycrystalline and exhibit the coexistence of anatase as well as rutile phases when de-ionized water is used as dissolvent, while the presence of brookite is observed when ethanol is used.

1.
Linsebigler
A.L.
,
Lu
G.
and
Yates J.T.
Jr
. (
1995
)
Photocatalysis on TiOn Surfaces: Principles, Mechanisms, and Selected Results
,
Chem. Rev.
95
,
735
758
.
2.
Fujishima
A.
and
Honda
K.
(
1972
)
Electrochemical Photolysis of Water at a Semiconductor Electrode
,
Nature
238
,
37
38
.
3.
O’Regan
B.
and
Gratzel
M.
(
1991
)
A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films
,
Nature
353
,
737
740
.
4.
Evans
P
and
Sheel
D W
(
2007
)
Photoactive and antibacterial TiO2 thin films on stainless steel Surf. Coat
.
Technol.
201
,
9319
9324
.
5.
Skubal
L. R.
,
Meshkov
N. K.
and
Vogt
M. C.
(
2002
)
Detection and identification of gaseous organics using a TiO2 sensor
J. Photochem. Photobiol. A Chem.
148
,
103
108
.
6.
Zhang
H. Z.
and
Banfield
J. F.
(
1998
)
Thermodynamic analysis of phase stability of nanocrystalline titania
,
J. Mater. Chem.
8
,
2073
2076
.
7.
Changzheng
W.
,
Lanyu
L.
,
Xi
Z.
,
Jinlong
Y.
and
Yi
X.
(
2007
)
Large-Scale Synthesis of Titanate and Anatase Tubular Hierarchitectures
,
Small
9
,
1518
1522
.
8.
Bakardjieva
S.
,
Šubrt
J.
,
Štengl
V.
,
Dianez
M. J.
and
Sayagues
M. J.
(
2005
)
Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase
,
Applied Catalysis B: Environmental
58
,
193
202
.
9.
Jho
J. H.
,
Kim
D. H.
,
Kim
S. J.
and
Lee
K. S.
(
2008
)
Synthesis and photocatalytic property of a mixture of anatase and rutile TiO2 doped with Fe by mechanical alloying process
,
J. Alloys Compd.
459
,
386
389
.
10.
Jiang
D.
,
Zhang
S.
and
Zhao
H.
(
2007
)
Photocatalytic degradation characteristics of different organic compounds at TiO2 nanoporous film electrodes with mixed anatase/rutile phases
,
Environ. Sci. Technol.
41
,
303
308
.
11.
Schneider
M.
,
Baiker
J.
(
1992
)
High-surface-area titania aerogels: preparation and structural properties
,
J. Mater. Chem.
2
,
687
589
.
12.
Yanagisawa
K.
,
Ovenstone
J.
(
1999
)
Crystallization of anatase from amorphous titania using the hydrothermal technique: Effects of starting saterial and temperature
,
J. Phys. Chem., B
103
7781
7787
.
13.
Li
J.G.
,
Ikeda
M.
,
Moriyoshi
Y.
,
Ishigaki
T.
(
2007
)
Control of particle size and phase formation of TiO2 nanoparticles synthesized in RF induction plasma
,
J. Phys, D: Appl. Phys.
40
,
2348
2353
.
14.
Figgemeier
E.
,
Kylberg
W.
,
Constable
E.
,
Scarisoreanu
M.
,
Alexandrescu
R.
,
Morjan
I.
,
Soare
I.
,
Birjega
R.
,
Opovici
E.
,
Fleaca
C.
,
Gavrila-Florescu
L.
and
Prodan
G.
(
2007
)
Titanium dioxide nanoparticles prepared by laser pyrolysis: Synthesis and photocatalytic properties
.
Appl. Surf. Sci.
254
,
1037
1041
.
15.
Shi
J.
,
Chen
J.
,
Feng
Z.
,
Chen
T.
,
Lian
Y.
,
Wang
X.
and
Li
C.
(
2007
)
Photoluminescence Characteristics of TiO2 and Their Relationship to the Photoassisted Reaction of Water/Methanol Mixture
,
J. Phys. Chem. C
111
,
693
699
.
16.
Kabashin
A.V.
and
Meunier
M.
(
2003
)
Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water
,
J. Appl. Phys.
94
,
7941
7943
.
17.
Yang
G.W.
(
2007
)
Laser ablation in liquids: Applications in the synthesis of nanocrystals
,
Progress in Materials Science
52
,
648
298
.
18.
Bajaj
G.
and
Soni
R. K.
(
2009
)
Effect of liquid medium on size and shape of nanoparticles prepared by pulsed laser ablation of tin
,
Appl. Phys. A
97
481
487
.
19.
Ledoux
G.
,
Amans
D.
,
Dujardin
C.
,
Masenelli-Varlot
K.
(
2009
)
Facile and rapid synthesis of highly luminescent nanoparticles via pulsed laser ablation in liquid
,
Nanotechnology
20
, 445605 (
8
pp).
20.
Boutinguiza
M.
,
Lusquiños
F.
,
Riveiro
A.
,
Comesaña
R.
and Pou. (
2009
)
Hydroxylapatite nanoparticles obtained by fiber laser-induced fracture
Appl. Surf. Sci.
255
(
10
),
5382
5385
.
21.
Boutinguiza
M.
,
Comesaña
R.
,
Lusquiños
F.
,
Riveiro
A.
,
Pou
J.
(
2011
)
Production of nanoparticles from natural hydroxylapatite by laser ablation
Nanoscale Research Letters
,
6
255
.
22.
Boutinguiza
M.
,
Rodríguez-González
B.
,
del Val
J.
, Comesaña,
Lusquiños
F.
and
Pou
J.
(
2011
)
Laser-assisted production of spherical TiO2 nanoparticles in water
,
Nanotechnology
22
, 195606 (
7
pp).
23.
Manickam
S.
,
Venkatakrishnan
K.
,
Tan
B.
and
Venkataramanan
V.
(
2009
)
Study of silicon nanofibrous structure formed by femtosecond laser irradiation in air
.
Opt. Express.
17
,
13869
13874
.
24.
Besner
S.
,
Kabashin
A.V.
and
Meunier
M.
(
2006
)
Fragmentation of colloidal nanoparticles by femtosecond laser-induced supercontinuum generation
,
App. Phys. Lett
.
89
,
233122
.
25.
Pyatenko
A.
,
Yamaguchi
M.
and
Suzuki
M.
(
2007
)
Synthesis of spherical silver nanoparticles with controllable sizes in aqueous solutions
,
J. Phys. Chem. C
111
,
7910
7917
.
26.
Aguirre
C. M.
,
Moran
C. E.
,
Young
J.F.
and
Halas
N.J.
(
2004
)
Laser-Induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasmon resonant illumination
,
J. Phys. Chem. B
108
,
7040
7045
.
27.
Takami
A.
,
Kurita
H.
and
Koda
S.
(
1999
)
Laser-Induced size reduction of noble metal particles
,
J. Phys. Chem. B
103
,
1226
1232
.
28.
Pyatenko
A.
,
Yamaguchi
M.
and
Suzuki
M.
(
2009
)
Mechanisms of size reduction of colloidal silver and gold nanoparticles irradiated by Nd:YAG Laser
,
J. Phys. Chem. C
113
,
9078
9085
.
This content is only available via PDF.
You do not currently have access to this content.