We will present results of studies on a novel fs-laser induced ablation mechanism, which in literature is denoted as “athermal” or “non-thermal” and includes no melting or evaporation processes. This non-thermal ablation process is capable for solids where the atomic bond strength normal to the surface is significantly different to those in lateral direction. One example for such a solid is given by graphite. In graphite the Carbon atoms of a single graphene layer are bond covalently and thus exhibiting a bond strength of 4 eV per atom. In contrast, the interlayer bond strength normal to the surface results of the more than two orders of magnitude weaker Van-der-Waals-interaction. Without influencing the strong layer internal sp2-bonds this ablation process only breaks the weak van-der-Waals bonds between the layers resulting in a spalation dynamic of the topmost intact graphene layers from the surface of the highly oriented pyrolytic graphite target. Maintaining the internal sp2 crystalline structure of the ablated graphene layers this non-thermal ablation process is feasible to transfer thin layer of sandwich structured solids on various substrates, conserving their mechanical and electronic properties.

1.
Geim
,
A.
,
Novoselov
,
K. S.
(
2007
)
The rise of graphene
,
Nature materials
6
,
183
191
2.
Ihn
,
T.
,
Güttinger
,
J.
,
Molitor
,
F.
,
Schnez
,
S.
,
Schurtenberger
,
E.
,
Jacobsen
,
A.
,
Hellmüller
,
S.
,
Frey
,
T.
,
Dröscher
,
S.
,
Stampfer
,
C.
&
Ensslin
,
K.
(
2010
)
Graphene single-electron transistors
,
Materials today
13
,
44
50
3.
Xia
,
F.
,
Mueller
,
T.
,
Lin
,
Y.
,
Valdes-Garcia
A.
&
Avouris
,
P.
(
2009
)
Ultrafast graphene photodetector
,
Nature Nanotechnology
4
,
839
843
4.
Arsat
,
R.
,
Breedon
,
M.
,
Shafiei
,
M.
,
Spizziri
,
P.G.
,
Gilje
,
S.
,
Kaner
,
R.B.
,
Kalantar-zadeh
K.
&
Wlodarski
,
W.
(
2009
)
Graphene-like nano-sheets for surface acoustic wave gas sensor applications
,
Chemical Physics Letters
467
,
344
347
5.
Schedin
,
F.
,
Geim
,
A.K.
,
Morozov
,
S.V.
,
Hill
,
E.W.
,
Blake
,
P.
,
Katsnelson
M.I.
&
Novoselov
,
K.S.
(
2007
)
Detection of Individual Gas Molecules Adsorbed on Graphene
,
Nature Materials
6
,
652
655
6.
Aleshkin
,
V.
,
Dubinov
,
A.
&
Ryzhii
,
V.
(
2009
)
Terahertz laser based on optically pumped graphene: Model and feasibility of realization
,
JETP Letters
89
,
63
67
7.
Giovannetti
,
G.
,
Khomyakov
,
P.
,
Brocks
,
G.
,
Kelly
,
P.
&
Van Den Brink
,
J.
(
2007
)
Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations
,
Physical Review B
76
,
073103(4)
.
8.
Dean
,
C. R.
,
Young
,
A. F.
,
Meric
,
I.
,
Lee
,
C.
,
Wang
,
L.
,
Sorgenfrei
,
S.
,
Watanabe
,
K.
,
Taniguchi
,
T.
,
Kim
,
P.
,
Shepard
K. L.
&
Hone
,
J.
(
2010
)
Boron nitride substrates for high-quality graphene electronics
,
Nature Nanotechnologies
5
,
722
726
.
9.
Gannett
,
W.
,
Regan
,
W.
,
Watanabe
,
K.
,
Taniguchi
,
T.
,
Crommie
M. F.
&
Zettl
,
A.
(
2011
)
Boron nitride substrates for high mobility chemical vapor deposited graphene
,
Applied Physics Letters
98
,
242105
10.
Jeschke
,
H. O.
,
Garcia
,
M. E.
&
Bennemann
,
K. H.
(
2001
)
Theory for the ultrafast ablation of graphite films
,
Phys. Rev. Lett.
87
,
015003
11.
Miyamoto
,
Y.
,
Zhang
,
H.
,
Tománek
,
D.
(
2010
)
Photoexfoliat on of Graphene from Graphite: An Ab Initio Study
,
Phys. Rev. Lett.
104
,
208302
12.
Sokolowski-Tinten
,
K.
,
Kudryashov
,
S.
,
Temnov
,
V.
,
Bialkowski
,
J.
,
Boing
,
M.
,
von Linde
,
D.
&
Cavalleri
,
A.
(
1999
)
Femtosecond laser-induced ablation of graphite
,
Optical Society of America
13.
Jeschke
H.
&
Garcia
,
M.
(
2002
)
Theoretical description of the ultrafast ablation of diamond and graphite: dependence of thresholds on pulse duration
,
Applied Surface Science
197
,
107
113
14.
Kudryashov
,
S.I.
(
2006
)
Ablative modification of graphite surfaces by single intense femtosecond pulses
,
J. Appl. Phys.
100
,
036103
15.
Lenner
,
M.
,
Kaplan
,
A.
&
Palmer
,
R.E.
(
2007
)
Nanoscopic coulomb explosion in ultrafast graphite ablation
,
Applied Physics Letters
90
,
153119
16.
Lenner
,
M.
,
Kaplan
,
A.
,
Huchon
,
C.
&
Palmer
,
R.E.
(
2009
)
Ultrafast laser ablation of graphite
,
Physical Review B
79
,
184105
17.
Carbone
,
F.
,
Baum
,
P.
,
Rudolf
,
P.
&
Zewail
,
A. H.
(
2009
)
Structural Preablation Dynamics of Graphite Observed by Ultrafast Electron Crystallography
,
Phys. Rev. Lett.
100
,
035501
18.
Breusing
,
M.
,
Ropers
C.
&
Elsaesser
,
T.
(
2009
)
Ultrafast carrier dynamics in graphite
,
physical review letters
102
,
086809
19.
Carbone
,
F.
,
Aubock
,
G.
,
Cannizzo
,
A.
,
Van Mourik
,
F.
,
Nair
,
R.R.
,
Geim
,
A. K.
,
Novoselov
,
K.S.
&
Chergui
,
M.
(
2011
)
Femtosecond carrier dynamics in bulk graphite and graphene paper
,
Chemical Physics Letters
504
,
37
40
20.
Moos
,
G.
,
Gahl
,
C.
,
Fasel
,
F.
,
Wolf
,
M.
&
Hertel
,
T.
, (
2001
)
Anisotropy of quasiparticle lifetimes and the role of disorder in graphite from ultrafast time-resolved photoemission spectroscopy
,
Phys. Rev. Lett.
87
,
267402
21.
Kampfrath
,
T.
,
Perfetti
,
L.
,
Schapper
,
F.
,
Frischkorn
,
C.
&
Wolf
,
M.
(
2005
)
Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite
,
Phys. Rev. Lett.
95
,
187403
22.
Nair
,
R.R.
,
Blake
,
P.
,
Grigorenko
,
A.N.
,
Novoselov
,
K.S.
,
Booth
,
T. J.
,
Stauber
,
T.
,
Peres
,
N.M.R.
&
Geim
,
A.K.
(
2008
)
Fine Structure Constant Defines Visual Transparency of Graphene
,
Science
320
,
1308
23.
Graf
,
D.
,
Molitor
,
F.
,
Ensslin
,
K.
,
Stampfer
,
C.
,
Jungen
,
A.
,
Hierold
C.
&
Wirtz
,
L.
(
2007
)
Raman imaging of graphene
,
Solid State Communications
142
,
44
46
This content is only available via PDF.
You do not currently have access to this content.