Prevention of porosity is essential in laser welding of heavy section plate members. In the previous paper, the authors demonstrated that a small amount of oxygen addition in the shielding gas was effective in preventing the porosity. However, solute oxygen in the weld metal reduces the weld metal toughness. In the present study, prevention of the porosity has been attempted with minimum dissolved oxygen in the weld metal. From some experimental results, it was clarified that the porosity suppression by oxygen was attributed to formation of CO in the keyhole. CO formed by the reaction between solute carbon and oxygen in the molten pool stabilises the keyhole due to increase in the static vapour pressure in the keyhole. The porosity prevention was also achieved, but the oxygen could be reduced in the weld metal by CO2 addition in the shielding gas, because CO is directly formed through decomposition of CO2 in the keyhole. Dissolution of oxygen in the molten pool is not always necessary in CO2 addition.

1.
Rayleigh
,
J. W. S.
(
1945
) THE THEORY OF SOUND Vol.2”,
New York
,
Dover Publications
.
2.
Chandrasekhar
,
S.
(
1961
) Hydrodynamic and Hydromagnetic Stability,
Oxford
,
Clarendon Press
.
3.
Tsukamoto
,
S.
,
Kawaguchi
,
I.
,
Arakane
,
G.
&
Honda
,
H.
(
2001
)
Suppression of Porosity using Pulse Modulation of Laser Power in 20 kW CO2 Laser Welding
, in
Proceedings of ICALEO2001
,
Jacksonville, USA
,
D607
615
.
4.
Tsukamoto
,
S.
,
Kawaguchi
,
I.
,
Arakane
,
G.
&
Honda
,
H.
(
2002
)
Keyhole Behaviour in High Power Laser Welding
, In
Proceedings of SPIE, Vol.4831, 1st Intel. Symp. on High-Power Laser Macroprocessing
,
Osaka, Japan
,
251
256
.
5.
Tsukamoto
,
S.
,
Zhao
,
L.
,
Arakane
,
G.
&
Sugino
,
T.
(
2009
)
Prevention of Porosity by Oxygen in Partial Penetration Laser and Laser-GMA Hybrid Welding
, in
Proceedings of ICALEO 2009
,
Orlando, USA
,
780
787
.
6.
Aidun
,
D. K.
&
Martin
,
S. A.
(
1997
)
Effect of sulfur and oxygen on weld penetration of high-purity austenitic stainless steels
,
J. Mater. Eng. Perform.
,
6
,
496
502
.
7.
Kaul
,
R.
,
Ganesh
,
P.
,
Singh
,
N.
,
Jagdheesh
,
R.
,
Bhagat
,
M. S.
,
Kumar
,
H.
,
Tiwari
,
P.
,
Vora
,
H. S.
&
Nath
,
A. K.
(
2007
)
Effect of active flux addition on laser welding of austenitic stainless steel
,
Sci. Technol. Weld. Join.
,
12
,
127
137
.
8.
Naito
,
Y.
,
Mizutani
,
M.
&
Katayama
,
S.
(
2006
)
Effect of oxygen in ambient atmosphere on penetration characteristics in single yttrium-aluminum-garnet laser and hybrid welding
,
J. Laser Appl.
,
18
,
21
27
.
9.
Zhao
,
L.
,
Tsukamoto
,
S.
,
Arakane
,
G.
&
Sugino
,
T.
(
2009
)
Influence of Oxygen on Weld Geometry in Fibre Laser Welding
, in
Proceedings of ICALEO 2009
,
Orlando, USA
,
759
765
.
10.
Mills
,
K. C.
,
Keene
,
B. J.
,
Brooks
,
R. F.
&
Sirali
,
A.
(
1998
)
Marangoni effects in welding
,
Phil. Trans. R. Soc. Lond. A
,
356
,
911
925
.
11.
Lu
,
S. P.
,
Fujii
,
H.
&
Nogi
,
K.
(
2004
)
Sensitivity of Marangoni convection and weld shape variations to welding parameters in O2-Ar shielded GTA welding
,
Scripta Mater.
,
51
,
271
277
.
12.
Rodrigues
,
A.
&
Loureiro
A.
(
2005
)
Effect of shielding gas and activating flux on weld bead geometry in tungsten inert gas welding of austenitic stainless steels
,
Sci. Technol. Weld. Join.
,
10
,
760
765
.
13.
Leconte
,
S.
,
Paillard
,
P.
,
Chapelle
,
P.
,
Henrion
,
G.
&
Saindrenan
,
J.
(
2007
)
Effect of oxide flux containing fluorides on TIG welding process
,
Sci. Technol. Weld. Join.
,
12
,
389
397
.
14.
Wang
,
Y.
&
Tsai
,
H. L.
(
2001
)
Effects of surface active elements on weld pool fluid flow and weld penetration in gas metal arc welding
,
Metall. Mater. Trans. B
,
32
,
501
515
.
15.
Fuhrich
,
T.
,
Berger
,
P.
&
Hugel
,
H.
(
2001
)
Marangoni effect in laser deep penetration welding of steel
,
J. Laser Appl.
,
13
,
178
186
.
16.
DebRoy
,
T.
,
private discussion on the basis of their numerical simulation
.
This content is only available via PDF.
You do not currently have access to this content.