The one-step cladding by using a high power direct diode laser (HPDDL) compared to a CO2 or a Nd:YAG laser is found to be a cost-effective process for repairing or building valued components and tools that are used in an automotive, aerospace, nuclear, and defense industries. Whereas, number of processing parameters such as laser power, scanning speed, powder feed rate, laser focal spot, and thermo-physical properties of the materials are involved in the process to achieve the desired geometrical features (size and shape) of the clad, and the surface properties (hardness, resistance to heat, wear, and corrosion). Numerical simulation is a cost-effective technique to predict the effect of processing parameters on the variation of geometry of the clad and the surface properties.

In this study, an experimentally-based finite element (FE) thermal model coupled with thermo-kinetic equations is developed to predict the temperature history and hardness of the cladding process. The temperature-dependent material properties and phase change kinetics are taken into account in this model. As-used experimental boundary conditions are adopted in this model.

A 2-kW direct diode laser of 808 nm in wavelength, rectangular-shaped laser spot of 12 mm×1 mm with uniform distribution (top-hat) of laser power is used to carry out the experiments. An off-axis powder injection system is used to deposit tool steel H13 on the AISI 4140 steel substrate. Metallurgical characterization and hardness measurements are performed to quantify the effect of processing parameters on the variation of geometrical features of the clad and its hardness.

1.
Kathy
Kinkade
, (
2006
)
Diode lasers test their mettle in surface treatment
,
Laser Focus World
,
95
97
.
2.
Jiang
,
W. H.
,
Kovacevic
,
R.
, (
2007
)
Laser deposited TiC/H13 tool steel composite coatings and their erosion resistance
,
Journal of Materials Processing Technology
,
186
,
331
338
.
3.
Adak
,
B.
,
Nash
,
P.
,
Chen
,
D.
, (
2005
)
Microstructural characterization of laser cladding of Cu-30Ni
,
Journal of Materials Science
,
40
,
2051
2054
.
4.
Lawrence
,
J.
, (
2006
)
A high power diode laser-based technique for the bonding of composite patches of aluminum alloys on various military aircraft
,
Journal of Laser Applications
,
18
(
2
),
151
155
.
5.
Banoek
,
M.
,
Dobrzanski
,
L.A.
, (
2006
)
Functional properties of laser modified surface of tool steel
,
Journal of Achievements in Materials and Manufacturing Engineering
,
17
(
1–2
),
313
316
.
6.
Nowotny
,
S.
,
Richter
,
A.
,
Beyer
,
E.
, (
1998
)
Laser cladding using high-power diode lasers
,
ICALEO
,
1998
,
68
74
.
7.
Abe
,
N.
,
Tukamoto
,
M.
,
Fukuhara
,
S.
,
Morimoto
,
J.
, (
2004
)
Surface modification of TiO2-ZiO2 layers with direct diode laser
,
Trans. JWRI
,
33
(
2
),
123
126
.
8.
Uenishi
,
K.
,
Ogata
,
Y.
,
Iwatani
,
S.
,
Adachi
,
A.
,
Sato
,
T.
,
Kobayashi
,
K.F.
, (
2007
)
Laser cladding of Fe-Cu based alloys on aluminum
,
Solid State Phenomena
,
127
,
331
336
.
9.
Syed
,
W.U.H.
,
Pinkerton
,
A.J.
,
Li
,
L.
, (
2005
)
A comparative study of wire feeding and powder feeding in direct diode laser deposition for rapid prototyping
,
Applied Surface Science
,
247
,
268
278
10.
Pinkerton
,
A. J.
,
Li
,
L.
, (
2004
)
Modeling the geometry of a moving laser melt pool and deposition track via energy and mass balances
,
J. Phys. D: Appl. Phys
,
37
,
1885
1895
.
11.
Picasso
,
M.
,
Marsden
,
C.F.
,
Wagniere
,
J.D.
,
Frenk
,
A.
,
Rappaz
,
M.
, (
1994
)
A simple but realistic model for laser cladding
,
Metallurgical and Materials Transactions B
,
25B
,
281
291
.
12.
Fathi
,
A.L.
,
Toyserkani
,
E.
,
Khajepour
,
A.
,
Durali
,
M.
, (
2006
)
Prediction of melt pool depth and dilution in laser powder deposition
,
J. Phy. D: Appl. Phys
,
39
,
2613
2623
.
13.
Huang
,
Y.L.
,
Liu
,
J.
,
Ma
,
N.H.
,
Li
,
J.G.
, (
2006
)
Three-dimensional analytical model on laser-powder interaction during laser cladding
,
Journal of Laser Applications
,
18
(
1
),
42
46
.
14.
Han
,
L.
,
Liou
,
F.W.
,
Phatak
,
K.M.
, (
2004
)
Modeling of laser cladding with powder injection
,
Metallurgical and Materials Transactions B
,
35B
,
1139
1150
.
15.
Liu
,
J
and
Li
,
L.
, (
2007
)
Effects of process variables on laser direct formation of thin wall
,
Optics & Laser technology
,
39
,
231
236
.
16.
Costa
,
L.
,
Vilar
,
R.
,
Reti
,
T.
,
Deus
,
A.M.
, (
2005
)
Rapid tooling by laser powder deposition
:
Process simulation using finite element analysis, Acta Materialia
,
53
,
3987
3999
.
17.
Foroozmer
,
E.
,
Kovacevic
,
R.
, (
2009
)
Thermokinetic modeling of phase transformation in the laser powder deposition process
,
Metallurgical and Materials Transactions A
,
40A
,
1935
1943
.
18.
Nash
,
P.
,
Hu
,
Z.
,
Zhou
,
G.
,
Adak
,
B.
, (
2004
)
Molten pool size in laser cladding simulated by finite element method, MS&T
2004,
303
311
.
19.
Wen
,
S.
,
Shin
,
Y.C.
, (
2009
)
Modeling of the off-axis high power diode laser (HPDL) cladding process
,
Proceedings of the ASME 2009 International Manufacturing Science and Engineering Conference (MSEC 2009)
, Paper: MSEC2009-84049,
1
10
.
20.
Lakhkar
,
R.S.
,
Shin
,
Y.C.
,
Krane
,
M.J.M.
, (
2008
)
Predictive modeling of multi-track laser hardening of AISI 4140 steel
,
Materials Science and Engineering A
,
480
,
209
217
.
21.
Foroozmer
,
E.
,
Lin
,
D.
,
Kovacevic
,
R.
, (
2009
)
Application of vibration in the laser powder deposition process
,
Journal of Manufacturing Processes
,
11
,
38
44
.
22.
Capello
,
E.
,
Castrelnuovo
,
M.
,
Previtali
,
B.
,
Vedali
,
M.
, (
2007
)
Surface treatment of welded duplex stainless steels by diode laser
,
Journal of Laser Applications
,
19
(
3
),
133
140
.
23.
Woo
,
H.G.
,
Cho
,
H.S.
, (
1999
)
Three-dimensional temperature distribution in laser surface hardening processes
,
IMech Proc Instn Mech Engrs Part B
,
213
,
695
712
.
24.
ANSYS
Inc
., (
2009
) ANSYS 11.0 Manual.
25.
Choi
,
J.
,
Hua
,
Y.
, (
2004
)
Dimensional and material characteristics of direct deposited H13 tool steel by CO2 laser
,
Journal of Laser Applications
, 2004,
16
(
4
),
245
251
.
26.
Chiang
,
K.A.
,
Chen
,
Y.C.
, (
2005
)
Laser surface hardening of H13 steel in the melt case
,
Materials Letters
,
59
,
1919
1923
.
27.
Reti
,
T.
,
Gergely
,
M.
,
Tardy
,
P.
, (
1987
)
Mathematical treatment of non-isothermal transformations
,
Materials Science and Technology
,
3
(
5
),
365
371
.
28.
Li
,
M.V.
,
Niebuir
,
D.V.
,
Meekiho
,
L.L.
,
Atteridge
,
D.G.
, (
1998
)
A computational model for the prediction of steel hardenability
,
Metallurgical and Materials Transactions B
,
661
672
.
29.
Celik
,
S.
,
Ersozlu
,
I.
, (
2009
)
Investigation of the mechanical properties and microstructure of friction joints between AISI 4140 and AISI 1050 steels
,
Materials and Design
,
30
,
970
s976
.
30.
Lee
,
J.H.
,
Jang
,
J.H.
,
Joo
,
B.D.
,
Son
,
Y.M.
,
Moon
,
Y.H.
, (
2009
)
Laser surface hardening of AISI H13 tool steel
,
Transactions of Nonferrous Metals Society of China
,
19
,
917
920
.
This content is only available via PDF.
You do not currently have access to this content.