A wavelength-tunable CO2 laser (spectrum range from 9.2 to 10.9 f.m) was applied in a multi-energy process for growing diamond crystals in open air. A pre-mixed C2H4/C2H2/O2 gas was used as precursors for the diamond growth. Laser energy was coupled into the reactions through resonantly exciting the CHB2B-wagging mode of ethylene (C2H4) molecules by tuning the laser wavelength to 10.532 µm. Diamond growth rate and diamond quality were both promoted by the laser-induced resonant excitations. High-quality diamond crystals were grown on silicon substrates with a high growth rate of ∼139 µm/hr. Diamond crystals up to 5 mm in height and 1 mm in diameter were grown in open air in 36 hours. Sharp Raman peak at 1332 cm-1 with a full width at half maximum value around 4.5cm-1 and distinct X-ray diffraction spectra indicate the high quality of the diamond crystals.

1.
Jensen
,
C.J.
&
Chiu
,
W.K.S.
(
2006
)
Open-air laser-induced chemical vapor deposition of silicon carbide coatings
,
Surface and Coatings Technology
201
,
2822
2828
.
2.
Molian
,
P.A.
&
Waschek
,
A.
(
1993
)
CO2-laser deposition of diamond thin-films on electronic materials
,
Journal of Materials Science
28
,
1733
1737
.
3.
Bundy
,
F. P.
,
Hall
,
H. T.
,
Strong
,
H. M.
&
Wentorf
,
R. H.
Jr
. (
1955
)
Man-made diamond
,
Nature
176
,
51
55
.
4.
Haubner
,
R.
&
Lux
,
B.
(
1993
)
Diamond growth by hot-filament chemical vapor deposition: state of the art
,
Diamond and Related Materials
2
,
1277
1294
.
5.
McCauley
,
T. S.
&
Vohra
,
Y. K.
(
1995
)
Homoepitaxial diamond film deposition on a brilliant cut diamond anvil
,
Applied Physics Letters
66
,
1486
1488
.
6.
Mokuno
,
Y.
,
Chayahara
,
A.
,
Soda
,
Y.
,
Horinoa
,
Y.
&
Fujimori
,
N.
(
2005
)
Synthesizing single-crystal diamond by repetition of high rate homoepitaxial growth by microwave plasma CVD
,
Diamond and Related Materials
14
,
1743
1746
.
7.
Asmussen
,
J.
,
Grotjohn
,
T. A.
,
Schuelke
,
T.
,
Becker
,
M. F.
,
Yaran
,
M. K.
,
King
,
D. J.
,
Wicklein
,
S.
&
Reinhard
,
D. K.
(
2008
)
Multiple substrate microwave plasma-assisted chemical vapor deposition single crystal diamond synthesis
,
Applied Physics Letters
93
,
031502
.
8.
Zou
,
Y. S.
,
Yang
,
Y.
,
Chong
,
Y. M.
,
Ye
,
Q.
,
He
,
B.
,
Yao
,
Z. Q.
,
Zhang
,
W. J.
,
Lee
,
S. T.
,
Cai
,
Y.
&
Chu
,
H. S.
(
2008
)
Chemical Vapor Deposition of Diamond Films on Patterned GaN Substrates via a Thin Silicon Nitride Protective Layer
,
Crystal Growth and Design
8
,
1770
1773
.
9.
Terranova
,
M. L.
,
Manno
,
D.
,
Rossi
,
M.
,
Serra
,
A.
,
Filippo
,
E.
,
Orlanducci
,
S.
&
Tamburri
,
E.
(
2009
)
Self-Assembly of n-Diamond Nanocrystals Into Supercrystals
,
Crystal Growth and Design
9
,
1245
1249
.
10.
Eguchi
,
K.
,
Yata
,
S.
&
Yoshida
,
T.
(
1994
)
Uniform and large-area deposition of diamond by cyclic thermal plasma chemical vapor deposition
,
Applied Physics letters
64
,
58
60
.
11.
Donnet
,
J. B.
,
Oulanti
,
H.
,
Le Huu
,
T.
&
Schmitt
,
M.
(
2006
)
Synthesis of large single crystal diamond using combustion-flame method
,
Carbon
44
,
374
380
.
12.
Grigoryev
,
E. V.
,
Savenko
,
V. N.
,
Sheglov
,
D. V.
,
Matveev
,
A. V.
,
Cherepanov
,
V. A.
&
Zolkin
,
A. S.
(
1998
)
Synthesis of diamond crystals from oxygen-acetylene flames on a metal substrate at low temperature
,
Carbon
36
,
581
585
.
13.
Hirose
,
H.
&
Komaki
,
K.
(
1988
) European Patent Applications, EP324538.
14.
Ravi
,
K. V.
(
1995
)
Combustion synthesis: is it the most flexible of the diamond synthesis processes?
Diamond and Related Materials
4
,
243
249
.
15.
Ling
,
H.
,
Xie
,
Z. Q.
,
Gao
,
Y.
,
Gebre
,
T.
,
Shen
,
X. K.
&
Lu
,
Y. F.
(
2009
)
Enhanced chemical vapor deposition of diamond by wavelength-matched vibrational excitations of ethylene molecules using tunable CO2 laser irradiation
,
Journal of Applied Physics
105
,
064901
.
16.
Ling
,
H.
,
Sun
,
J.
,
Han
,
Y. X.
,
Gebre
,
T.
,
Xie
,
Z. Q.
&
Zhao
,
M.
(
2009
)
Laser-induced resonant excitation of ethylene molecules in C2H4/C2H2/O2 reactions to enhance diamond deposition
,
Journal of Applied Physics
105
,
014901
.
17.
Wang
,
X. H.
,
Zhu
,
W.
,
Vonwindheim
,
J.
&
Glass
,
J. T.
(
1993
)
Combustion growth of large diamond crystals
,
Journal of Crystal Growth
129
,
45
55
.
18.
Snail
,
K. A.
&
Hanssen
,
L. M.
(
1991
)
High temperature, high rate homoepitaxial growth of diamond in an atmospheric pressure flame
,
Journal of Crystal Growth
112
,
651
659
.
19.
Komaki
,
K.
,
Yanagisawa
,
M.
,
Yamamoto
,
I.
&
Hirose
,
Y.
(
1993
)
Synthesis of Diamond in Combustion Flame under Low Pressures
,
Japanese Journal of Applied Physics
32
,
1814
1817
.
20.
Miller
,
J. A.
&
Melius
,
C. F.
(
1992
)
Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels
,
Combustion and Flame
91
,
21
39
.
21.
Yalamanchi
,
R. S.
&
Harshavardhan
,
K. S.
(
1990
)
Diamond growth in combustion flames
,
Journal of Applied Physics
68
,
5941
5943
.
22.
Gruen
,
D. M.
,
Redfern
,
P. C.
,
Horner
,
D. A.
,
Zapol
,
P.
&
Curtiss
,
L. A.
(
1999
)
Theoretical Studies on Nanocrystalline Diamond: Nucleation by Dicarbon and Electronic Structure of Planar Defects
,
Journal of Physical Chemistry B
103
,
5459
5467
.
23.
Redfern
,
P. C.
,
Horner
,
D. A.
,
Curtiss
,
L. A.
&
Gruen
,
D. M.
(
1996
)
Theoretical Studies of Growth of Diamond (110) from Dicarbon
,
Journal of Physical Chemistry
100
,
11654
11663
.
This content is only available via PDF.
You do not currently have access to this content.