Extensive and practical applications of carbon nanotubes (CNTs) in the field of electronics and devices require precisely controlled growth and integration of CNTs into predesigned micro/nano-architectures. Several critical topics, including where it starts, where it goes, alignment direction, and electrical types, have to be addressed to meet the challenges. Tremendous investigations have been made on the topics. However, due to existing drawbacks of individual approaches, such as high substrate temperature, coarse integration, mixed electrical types, liquid phase processing, reliability, yield and cost, high-performance-on-demand solutions are still vacant. In this study, we investigated several laser-based strategies to address the challenges. Parallel integration of CNTs into pre-designed micro/nano-architectures was achieved in a single-step laser-assisted chemical vapor deposition (LCVD) process at a relative low substrate temperature by making use of optical near-field effect. Growing CNT arrays of controlled alignments was achieved by applying external electrical biases of different polarities to influence the movement of catalyst particles in the LCVD process. CNT-based field-effect transistors (CNT-FETs) containing only semiconducting CNTs were obtained in a scalable manner through an optically controlled approach. The laser-based strategies investigated in this study suggest a laser-based solution-package to meet the challenges for practical applications of CNTs, and promises a reliable and scalable approach to achieve CNT-integrated devices.

1.
Avouris
,
P.
,
Martel
,
R.
,
Derycke
,
V.
&
Appenzeller
,
J.
(
2002
)
Carbon nanotube transistors and logic circuits
,
Physica B
323
,
6
14
.
2.
Burghard
,
M.
,
Klauk
,
H.
&
Kern
,
K.
(
2009
)
Carbon-based field-effect transistors for nanoelectronics
,
Advanced Materials
21
,
2586
2600
.
3.
Bachtold
,
A.
,
Hadley
,
P.
,
Nakanishi
,
T.
&
Dekker
,
C.
(
2001
)
Logic circuits with carbon nanotube transistors
,
Science
294
,
1317
1320
.
4.
Dai
,
H.J.
(
2002
)
Carbon nanotubes: opportunities and challenges
,
Surface Science
500
,
218
241
.
5.
Avouris
,
P.
&
Chen
,
J.
(
2006
)
Nanotube electronics and optoelectronics
,
Materials Today
9
,
46
54
.
6.
Franklin
,
N.R.
,
Wang
,
Q.
,
Tombler
,
T.W.
,
Javey
,
A.
,
Shim
,
M.
&
Dai
,
H.J.
(
2002
)
Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems
,
Applied Physics Letters
81
,
913
915
.
7.
Falvo
,
M.R.
,
Clary
,
G.J.
,
Taylor
,
R.M.
,
Chi
,
V.
,
Brooks
,
F.P.
,
Washburn
,
S.
&
Superfine
,
R.
(
1997
)
Bending and buckling of carbon nanotubes under large strain
,
Nature
389
,
582
584
.
8.
Wei
,
Y.Y.
&
Eres
,
G.
(
2000
)
Direct fabrication of carbon nanotube circuits by selective area chemical vapour deposition on pre-patterned structures
,
Nanotechnology
11
,
61
64
.
9.
Keren
,
K.
,
Berman
,
R.S.
,
Buchstab
,
E.
,
Sivan
,
U.
&
Braun
,
E.
(
2003
)
DNA-templated carbon nanotube field-effect transistor
,
Science
302
,
1380
1382
.
10.
Li
,
J.Q.
,
Zhang
,
Q.
,
Peng
,
N.
&
Zhu
,
Q.
(
2005
)
Manipulation of carbon nanotubes using AC dielectrophoresis
,
Applied Physics Letters
86
,
153116
.
11.
Krupke
,
R.
,
Hennrich
,
F.
,
Lohneysen
,
V.H.
&
Kappes
,
M.M.
(
2003
)
Separation of metallic from semiconducting single-walled carbon nanotubes
,
Science
301
,
344
347
.
12.
Collins
,
P.G.
,
Arnold
,
M.S.
&
Avouris
,
P.
(
2001
)
Engineering carbon nanotubes and nanotube circuits using electrical breakdown
,
Science
292
,
706
709
.
13.
Fan
,
S.
,
Chapline
,
M.G.
,
Franklin
,
N.R.
,
Tombler
,
T.W.
,
Cassell
,
A.M.
&
Dai
,
H.J.
(
1999
)
Self-oriented regular arrays of carbon nanotubes and their field emission properties
,
Science
283
,
512
514
.
14.
Liu
,
Y.T.
,
Xie
,
X.M.
,
Gao
,
Y.F.
,
Feng
,
Q.P.
,
Guo
,
L.R.
,
Wang
,
X.H.
&
Ye
,
X.Y.
(
2007
)
Gas flow directed assembly of carbon nanotubes into horizontal arrays
,
Materials Letters
61
,
334
338
.
15.
Huang
,
S.M.
,
Woodson
,
M.
,
Smalley
,
R.
&
Liu
,
J.
(
2004
)
Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating” chemical vapor deposition process
,
Nano Letters
4
,
1025
1028
.
16.
Avigal
,
Y.
&
Kalish
,
R.
(
2001
)
Growth of aligned carbon nanotubes by biasing during growth
,
Applied Physics Letters
78
,
2291
2293
.
17.
Nakayama
,
Y.
,
Pan
,
L.J.
&
Takeda
,
G.
(
2006
)
Low-temperature growth of vertically aligned carbon nanotubes using binary catalysts
,
Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papera
45
,
369
371
.
18.
Dresselhaus
,
M.S.
,
Dresselhaus
,
G.
,
Saito
,
R.
&
Jorio
,
A.
(
2005
)
Raman spectroscopy of carbon nanotubes
,
Physics Reports-Review Section of Physics Letters
409
,
47
99
.
19.
Souza
,
A.G.
,
Chou
,
S.G.
,
Samsonidze
,
G.G.
,
Dresselhaus
,
G.
,
Dresselhaus
,
M.S.
,
An
,
L.
,
Liu
,
J.
,
Swan
,
A.K.
,
Unlu
,
M.S.
,
Goldberg
,
B.B.
,
Jorio
,
A.
,
Gruneis
,
A.
&
Saito
,
R.
(
2004
)
Stokes and anti-Stokes Raman spectra of small-diameter isolated carbon nanotubes
,
Physical Review B
69
,
115428
.
20.
Jorio
,
A.
,
Saito
,
R.
,
Hafner
,
J.H.
,
Lieber
,
C.M.
,
Hunter
,
M.
,
McClure
,
T.
,
Dresselhaus
,
G.
&
Dresselhaus
,
M.S.
(
2001
)
Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering
,
Physical Review Letters
86
,
1118
1121
.
21.
Hayazawa
,
N.
,
Yano
,
T.
,
Watanabe
,
H.
,
Inouye
,
Y.
&
Kawata
,
S.
(
2003
)
Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy
,
Chemical Physics Letters
376
,
174
180
.
22.
Novotny
,
L.
,
Bian
,
R.X.
&
Xie
,
X.S.
(
1997
)
Theory of nanometric optical tweezers
,
Physical Review Letters
79
,
645
648
.
23.
Zhou
,
G.
,
Duan
,
W.
&
Gu
,
B.
(
2001
)
Electronic structure and field-emission characteristics of open-ended single-walled carbon nanotubes
,
Physics Review Letters
87
,
095504
.
24.
Yu
,
Q.K.
,
Qin
,
G.T.
,
Li
,
H.
,
Xia
,
Z.H.
,
Nian
,
Y.B.
&
Pei
,
S.S.
(
2006
)
Mechanism of horizontally aligned growth of single-wall carbon nanotubes on R-plane sapphire
,
Journal of Physical Chemistry B
110
,
22676
22680
.
25.
Jorio
,
A.
,
Souza Filho
,
A.G.
,
Dresselhaus
,
G.
,
Dresselhaus
,
M.S.
,
Swan
,
A.K.
,
Ünlü
,
M.S.
,
Goldberg
,
B.B.
,
Pimenta
,
M.A.
,
Hafner
,
J.H.
,
Lieber
,
C.M.
&
Saito
,
R.
(
2002
)
G-band resonant Raman study of 62 isolated single-wall carbon nanotubes
,
Physical Review B
65
,
155412
.
26.
Saito
,
R.
,
Jorio
,
A.
,
Hafner
,
J.H.
,
Lieber
,
C.M.
,
Hunter
,
M.
,
McClure
,
T.
,
Dresselhaus
,
G.
&
Dresselhaus
,
M.S.
(
2001
)
Chirality-dependent G-band Raman intensity of carbon nanotubes
,
Physical Review B
64
,
085312
.
27.
Brown
,
S.D.M
,
Jorio
,
A.
&
Corio
,
P.
(
2001
)
Origin of the Breit–Wigner–Fano lineshape of the tangential G-band feature of metallic carbon nanotubes
,
Physical Review B
63
,
155414
.
28.
Kataura
,
H.
,
Kumazawa
,
Y.
,
Maniwa
,
Y.
,
Umezu
,
I.
,
Suzuki
,
S.
,
Ohtsuka
,
Y.
&
Achiba
,
Y.
(
1999
)
Optical properties of single-wall carbon nanotubes
,
Synthetic Metals
103
,
2555
2558
.
This content is only available via PDF.
You do not currently have access to this content.