The performance of laser ablation generated debris control by means of open immersion techniques have been shown to be limited by flow surface ripple effects on the beam and the action of ablation plume pressure loss by splashing of the immersion fluid. To eradicate these issues a closed technique has been developed which ensured a controlled geometry for both the optical interfaces of the flowing liquid film. This had the action of preventing splashing, ensuring repeatable machining conditions and allowed for control of liquid flow velocity. To investigate the performance benefits of this closed immersion technique bisphenol A polycarbonate samples have been machined using filtered water at a number of flow velocities. The results demonstrate the efficacy of the closed immersion technique: a 93% decrease in debris is produced when machining under closed filtered water immersion; the average debris particle size becomes larger, with an equal proportion of small and medium sized debris being produced when laser machining under closed flowing filtered water immersion; large debris is shown to be displaced further by a given flow velocity than smaller debris, showing that the action of flow turbulence in the duct has more impact on smaller debris. Low flow velocities were found to be less effective at controlling the positional trend of deposition of laser ablation generated debris than high flow velocities; but, use of excessive flow velocities resulted in turbulence motivated deposition. This work is of interest to the laser micromachining community and may aide in the manufacture of 2.5D laser etched patterns covering large area wafers and could be applied to a range of wavelengths and laser types.

1.
Rizvi
,
N. H.
,
Apte
,
P.
(
2002
)
Developments in laser micromachining techniques
,
Journal of Materials Processing Technology
,
127
, pp.
206
210
.
2.
Dyer
,
P. E.
(
2003
)
Excimer laser polymer ablation: twenty years on
,
Applied Physics A
, 2003,
77
, pp.
167
173
.
3.
Gower
,
M. C.
(
2001
)
Excimer laser microfabrication and micromachining, Laser Precision Microfabrication
,
RIKEN Review
, pp.
50
56
.
4.
Braun
,
A.
,
Zimmer
,
K.
,
Hösselbarth
,
B.
,
Meinhardt
,
J.
,
Bigl
,
F.
,
Mehnert
,
R.
(
1998
)
Excimer laser micromachining and replication of 3D optical surfaces
,
Applied Surface Science
,
127-129
, pp.
911
914
.
5.
Izatt
,
J. A.
,
Sankey
,
N. D.
,
Partovi
,
F.
,
Fitzmaurice
,
M.
,
Rava
,
R. P.
,
Itzkan
,
I.
, and
Feld
,
M. S.
(
1990
)
Ablation of Calcified Biological Tissue Using Pulsed Hydrogen Fluoride Laser Radiation
,
IEEE Journal of Quantum Electronics
,
26
, pp.
2261
2270
.
6.
Ghantasala
,
M. K.
,
Hayes
,
J. P.
,
Harvey
,
E. C.
, and
Sood
,
D. K.
(
2001
)
Patterning, electroplating and removal of SU-8 moulds by excimer laser micromachining
,
Journal of Micromechanics and Microengineering
,
11
, pp.
133
139
.
7.
Lankard
J. R.
, and
Wolbold
,
G.
, “
Excimer Laser Ablation of Polyimide in a Manufacturing Facility
”,
Applied Physics A
,
1992
,
54
, pp.
355
359
.
8.
Lobo
,
L. M.
, (
2002
)
Solid Phase By-Products of Laser Material Processing
,
Loughborough University
.
9.
Mizes
,
H.
,
Ott
,
M.
,
Eklund
,
E.
, and
Hays
,
D.
(
2000
)
Small particle adhesion: measurement and control
,
Colloids and Surfaces A
,
165
, pp.
11
23
.
10.
Stowers
,
I. F.
, and
Patton
,
H. G.
(
1978
)
Techniques for removing contaminants from optical surfaces
,
Proceedings of the Conference on Contamination
,
Washington, DC, USA
, pp.
127
141
.
11.
Hutcheson
,
G. D.
(
1988
)
Recent trends in clean technology
,
Microcontamination
,
8
, pp.
33
41
.
12.
Bowling
,
R. A.
(
1987
)
Behaviour and detection of particles in vacuum processes
,
Journal of the Electrochemical Society
,
134
, pp.
122
133
.
13.
Bardina
,
J.
(
1988
)
Methods for surface particle removal: a comparative study
,
Particulate Science and Technology
,
6
, pp.
121
131
.
14.
Rizvi
,
N. H.
(
1999
)
Production of Novel 3D Microstructures Using Excimer Laser Mask Projection Techniques
,
The Proceedings of SPIE
,
3680
, pp.
546
552
.
15.
Pedder
,
J. E.
,
Holmes
,
A. S.
,
Booth
,
H. J.
(
2008
)
Pulsed Laser Ablation of Polymers for Display Applications
,
The Proceedings of SPIE
,
6879
.
16.
Exitech EUV microstepper tool for resist testing and technology evaluation presentation
(
2004
)
International SEMATECH Litho Forum
,
SEMATECH Inc.
,
Los Angeles, USA
.
17.
Richerzhagen
,
B
(
1999
)
Material shaping device with a laser beam which is injected into a stream of liquid
,
Synova S.A.
, WO/1999/056907,
Switzerland
.
18.
Scaggs
,
M. J.
(
2003
)
Method and apparatus for fine liquid spray assisted laser material processing
,
Lambda Physic Application Center
, WO/2003/028943,
USA
.
19.
Wang.
J.
,
Niino.
H.
,
Yabe.
A.
(
2000
)
Micromachining of transparent materials with super-heated liquid generated by multiphotonic absorption of organic molecule
,
Applied Surface Science
,
154–155
, pp.
571
576
.
20.
Sattari
,
R.
,
Sajti
,
C. L.
,
Kahn
,
S.
, and
Barcikowski
,
S.
(
2008
)
Scale-up of nanoparticle production during laser ablation of ceramics in liquid media
,
The proceedings of The 27th International Congress on Application of Lasers and Electro-Optics: Laser Materials Processing Section
,
Temecula, CA
. pp.
49
54
.
21.
Katto
,
M.
,
Kuroe
,
Y.
,
Kaku
,
M.
,
Kubodera
,
S.
,
Yokotani
,
A.
,
Katayama
,
H.
, and
Nakayama
,
T.
(
2008
)
Nano-particles of hydroxyapatite formed by underwater laser ablation methodm
,
The proceedings of The 27th International Congress on Application of Lasers and Electro-Optics: Laser Materials Processing Section
,
Temecula, CA
. pp.
65
67
.
22.
Elaboudi
,
I.
,
Lazare
,
S.
,
Belin
,
C.
,
Talaga
,
D.
, and
Labrugere
C.
(
2008
)
Underwater excimer laser ablation of polymers
,
Applied Physics A
,
92
, pp.
743
748
.
23.
Elaboudi
,
I.
,
Lazare
,
S.
,
Belin
,
C.
,
Talaga
,
D.
, and
Labrugere
C.
(
2008
)
From polymer films to organic nanoparticles suspensions by means of excimer laser ablation in water
,
Applied Physics A
,
93
, pp.
827
831
.
24.
Elaboudi
,
I.
,
Lazare
,
S.
,
Belin
,
C.
,
Talaga
,
D.
, and
Labrugere
C.
(
2007
)
Organic nanoparticles suspensions preparation by underwater excimer laser ablation of polycarbonate
,
Applied Surface Science
,
253
, pp.
7835
7839
.
25.
Dowding
,
C. F.
, and
Lawrence
,
J.
(
2009
)
Use of thin laminar liquid flows above ablation area for control of ejected material during excimer machining
,
IMECHE Proceedings B
,
223
, pp.
759
774
.
26.
Visser
,
J.
(
1976
)
The Adhesion of Colloidal Polystyrene Particles to Cellophane as a Function of pH and Ionic Strength
,
Journal of Colloid and Interfacial Science
,
55
, pp.
664
667
.
27.
Yukawa
,
H.
(
1950
)
Quantum theory of non-local fields: Part 1. Free fields
”,
Physical Review
,
77
, pp.
219
226
.
28.
Bickel
,
W. S.
and
Wentzel
,
T. M.
(
1989
) Adhesion due to a meniscus in a crossed-fibre system,
Particles on surfaces 2: detection, adhesion and removal
, Editor
Mittal
,
K. L.
,
1
,
Plenum
,
New York
, pp.
35
48
.
29.
Berthe
,
L.
,
Fabbro
,
R.
,
Peyre
,
P.
, and
Tollier
,
L.
(
1997
)
Shock waves from a water-confined laser-generated plasma
,
Journal of Applied Physics
,
82
, pp.
2826
2832
.
30.
Zhu
,
S.
,
Lu
,
Y. F.
,
Hong
,
M. H.
,
Chen
,
X. Y.
, (
2001
)
Laser ablation of solid substrates in water and ambient air
,
Journal of Applied Physics
,
89
, pp.
2400
2403
.
31.
Munson
,
B. R.
,
Donald
,
F. Y.
, and
Theodore
,
H. O.
(
2002
)
Fundamentals of Fluid Mechanics
,
4
,
John Wiley & Sons Inc.
,
NY
.
32.
Dyer
,
P. E.
,
Key
,
P. H.
,
Sands
,
D.
,
Snelling
,
H. V.
, and
Wagner
,
F. X.
(
1995
)
Blast-wave studies of excimer laser ablation of ZnS
,
Applied Surface Science
,
86
, pp.
18
23
.
33.
Fabbro
,
R.
,
Peyre
,
P.
,
Berthe
,
L.
, and
Scherpereel
,
X. L.
(
1998
)
Physics and applications of laser-shock processing
,
Journal of Laser Applications
,
10
, pp.
265
269
.
34.
Wang
,
W. J.
,
Mei
1,
X. S.
,
Jiang
1,
G. D.
, and
Yang
,
C. J.
(
2008
)
Shape characteristics of microstructures in femtosecond laser multi-pulse ablation of metals
,
IMECHE Proceedings B
,
2008
,
222
, pp.
837
848
.
35.
Dowding
,
C. F.
,
Lawrence
,
J.
(
2009
)
Impact of open de-ionized water thin film laminar immersion on the liquid immersed ablation threshold and ablation rate of features machined by KrF excimer laser ablation of bisphenol A polycarbonate
,
Optics and Lasers in engineering
,
47
, pp.
1169
1176
36.
Crafer
,
R.
, and
Oakley
,
P. J.
(
1993
)
Laser Processing in Manufacturing
,
Chapman & Hall
,
London
.
This content is only available via PDF.
You do not currently have access to this content.